OpenCV与AI深度学习 | CIB-SE-YOLOv8: 优化的YOLOv8, 用于施工现场的安全设备实时检测 !

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:CIB-SE-YOLOv8: 优化的YOLOv8, 用于施工现场的安全设备实时检测 !

安全设备是确保建筑施工现场安全的关键组成部分,其中头盔尤为重要,能有效减少伤害和死亡。传统的监督和项目经理手动检查方法效率低下且劳动密集,往往无法预防因缺乏安全设备引发的事故。

为了解决这个问题,利用计算机视觉和深度学习的新方法已经被开发出来,特别是实时检测技术,即YOLO。

本研究利用公开的SHEL5K数据集进行头盔检测任务。提出的CIB-SE-YOLOv8模型在YOLOv8n的基础上,通过引入SE注意力机制和用C2TCIB块替换某些C2T块构建而成。

与YOLOv8n相比,作者的模型在mAP50方面取得了88.4%的分数,提高了3.2%。同时,作者的模型在精确度上提高了0.5%,在召回率上提高了3.9%,显著提升了头盔检测性能。

此外,提出的模型在参数方面有2.68百万,计算速度方面有7.6 GFLOPs,与YOLOv8n的3百万参数和8.1 GFLOPs相比,提供了更高效的实时检测任务解决方案,因此,它是一种更有效的提高建筑施工现场安全的方法。

I Introduction

建筑安全是建筑和相关行业的一个关键问题。确保所有建筑工人佩戴合适的安全设备,如安全帽,至关重要。然而,传统的由主管和项目经理手动监督的方法效率低下。利用计算机视觉和深度学习技术的新方法可以实现实时检测能力。当工人未佩戴安全帽时,配备计算机视觉技术的摄像头可以立即检测到这一情况,并向工人发出警报,同时向管理层报告事件。这种系统大大降低了受伤和其他与安全相关问题的风险。

在本论文中,作者首先在公开可用的数据集SHEL5k上比较了YOLOv5n和YOLOv8n在头盔检测任务上的性能,分别获得了mAP50分数为84.7%和85.2%。由于YOLOv8n在性能和推理时间方面表现更好,作者进一步通过引入SE注意力并替换部分C2f模块为C2fCIB模块来增强模型。

改进后的模型,称为CIB-SE-YOLOv8,在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值