本文来源公众号“3D视觉工坊”,仅用于学术分享,侵权删,干货满满。
原文链接:定位精度提高97.9%!TUM新作Gassidy:动态环境中的Gaussian Splatting SLAM
0. 论文信息
标题:Gassidy: Gaussian Splatting SLAM in Dynamic Environments
作者:Long Wen, Shixin Li, Yu Zhang, Yuhong Huang, Jianjie Lin, Fengjunjie Pan, Zhenshan Bing, Alois Knoll
机构:TUM
原文链接:https://arxiv.org/abs/2411.15476
1. 导读
3D Gaussian Splatting (3DGS)允许灵活调整场景表示,从而在静态环境中的密集视觉同步定位和映射(SLAM)过程中实现场景质量的持续优化。然而,3DGS在处理不规则运动的动态对象的环境干扰方面面临挑战,导致相机跟踪精度和地图重建质量下降。为了应对这一挑战,我们开发了一种RGB-D稠密SLAM,称为动态环境中的高斯Splatting SLAM(gas sidy)。这种方法基于设计的光度几何损失函数计算高斯分布,以生成每个环境分量的渲染损失流。为了区分和过滤环境干扰,我们迭代地分析渲染损失流,以检