OpenCV与AI深度学习 | 干货 | 深度学习模型训练和部署的基本步骤

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:干货 | 深度学习模型训练和部署的基本步骤

    训练深度学习模型的过程需要管理许多不同的步骤和组件。从数据准备到模型评估,每个步骤对于确保模型的成功都至关重要。 

1. 数据验证

    高质量数据是任何深度学习模型的基础。即使是最复杂的算法在劣质数据上也无法取得良好效果。以下是确保您的数据已准备好进行训练的方法:

    • 确保数据质量:首先检查数据是否存在问题,例如文件损坏、条目缺失或任何表明数据可能不适合训练的迹象。尽早发现这些问题可以为您省去以后的麻烦。

    • 数据清理:原始数据中经常会发现错误、缺失值或不一致。通过删除或修复有问题的条目并在必要时用 NAN 或平均值填充来解决这些问题。此清理步骤可确保您的数据准确且一致。

    • 数据一致性:检查您的数据是否在所有变量中遵循统一的格式和比例。例如,如果您正在处理图像,请确保它们的大小和分辨率都相同。数据一致性有助于模型可靠地学习,并最大限度地降低变异性影响模型性能的风险。

    • 离群值和异常:离群值可能会影响模型性能并导致结果不准确。识别任何异常数据点并决定是否排除它们、转换它们或通过正则化来解释它们,这样不会扭曲模型的学习。

2. 数据准备

    验证完数据后,就可以开始为模型做准备了。适当的准备工作可以使您的数据与模型的要求保持一致,从而增强学习过程。关键步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值