集智书童 | MITA-YOLO: 一种改进的间接视觉 YOLOv8方法用于目标检测,很酷!

本文来源公众号“集智书童”,仅用于学术分享,侵权删,干货满满。

原文链接:MITA-YOLO: 一种改进的间接视觉 YOLOv8方法用于目标检测!

火势可能导致文化遗产建筑遭受严重破坏,因此及时的火警检测至关重要。传统的密集布线和钻孔可能对这些结构造成损害,因此减少摄像头的数量以最小化这种影响具有挑战性。

此外,由于噪声敏感性和火灾高发区的管理者专业知识的保护,避免误报至关重要。为了满足这些需求,作者提出了一种基于间接视觉的火警检测方法,称为Mirror Target YOLO(MITA-YOLO)

MITA-YOLO将间接视觉部署和增强的检测模块相结合。它使用镜像角度来实现间接视图,解决不规则空间中可见性有限的问题,并将每个间接视图与目标监测区域对齐。Target-Mask模块设计为自动识别和隔离每个图像中的间接视觉区域,并过滤掉非目标区域。

这使得模型可以继承管理者评估火灾风险区域的专家知识,提高火警检测的焦点和抗干扰能力。在作者的实验中,作者创建了一个包含800张图像的火警数据集。

结果表明,与其它主流模型相比,MITA-YOLO显著降低了摄像头的数量,同时实现了优越的检测性能。

I Introduction

文物建筑是本地历史和文化的重要载体 [1]。这些建筑的火灾风险巨大,可能导致不可挽回的损失 [2]。许多纪念建筑和博物馆都属于这一类别,然而为了保持其历史完整性,它们通常缺乏传统的消防设施,如洒水器或烟雾检测器 [3]。在数字时代,利用深度学习算法进行火灾检测已成为一个潜在的解决方案 [4]。然而,由于建筑结构和内部障碍,有效的摄像头覆盖范围具有挑战性,需要安装许多摄像头和大量的电缆,这可能损坏建筑的结构。

为解决这些挑战,需要一种基于深度学习的检测方法,以扩大每个摄像头的监控范围,确保高检测精度,并通过过滤低风险区域最小化误报。这种方法将使火灾监控有效,同时保持历史建筑的完整性。传统火灾监控方法和基于深度学习的解决方案是两种主要方法。传统的火灾预防依赖于烟雾报警器、温度传感器和手动火灾报警按钮[5]。烟雾报警器检测烟雾粒子浓度,达到阈值时发出警报。温度传感器监测环境温度变化,当温度超过安全水平时发出警报。手动火灾报警按钮使个人在观察到火灾时向火控中心发出警报。然而,在建筑遗迹中安装烟雾报警器和温度传感器可能会严重影响建筑的结构和外观。这些安装通常需要进行大量的钻孔和布线,这可能会导致结构损坏,并损害这些场所的美学和历史完整性。因此,为了保护文化遗产,需要一种更精细的方法,在减少物理干预的同时保持有效的火灾监控。

传统的深度学习防火解决方案使用视频监控与传统深度学习算法相结合,这大大减少了所需的设备和数量,减轻了对文化遗产结构和历史特色的破坏[6, 7, 8]。然而,这些方法仅依赖直接视觉,限制了每个摄像头的视野范围。在形状不规则的空间中,通常需要多个摄像头,这增加了成本,并要求大量布线和钻孔,影响了这些建筑物的保护和审美价值。

为解决这些问题,作者提出了一种基于间接视觉的针对性防火检测方法,名为Mirror Target YOLO(MITA-YOLO)。MITA-YOLO通过镜子以及增强的检测模块实现间接视觉。该方法使用广角镜子扩展摄像头的视野范围,无需添加额外的摄像头即可监控被遮挡的区域。通过在火灾风险较高(目标检测区域)的区域放置镜子,同时避免低风险区域(非兴趣区),这种设置可以实现集中监控,而不会破坏建筑结构。

在MITA-YOLO中,由广角镜子产生的间接视觉有效地可视化被遮挡的区域,大大减少了不规则空间中所需的摄像头的数量,并避免由于布线过长而造成的结构损坏。通过调整镜子布局,使其仅关注高风险区域,确保每个镜子图像只包含目标检测区域,过滤掉无关区域。提出的Target-Mask模块通过分割每个图像中的间接视觉区域来增强这一能力。通过预训练模型,Target-Mask可以自动识别镜子边界,并使用这些边界限制火警检测仅限于目标区域,过滤掉非兴趣区域[9]。因此,MITA-YOLO可以专注于感兴趣区域内的相关目标,提高检测准确性并减少误报。

这种针对性方法实现了更高的检测精度,同时降低了漏检率,确保了文化建筑的历史完整性。

本文的主要贡献如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值