本文来源公众号“极市平台”,仅用于学术分享,侵权删,干货满满。
极市导读
本文主要讨论了从追求模型 SoTA 到揭示新现象的转变。通过几个例子,包括ACNet到RepVGG的发展,RIFE插帧、Film插帧,以及OpenAI的近期工作,阐述了这种转变的重要性。
最近大家对于前沿工作的讨论,常常出现两极分化
比如 DiT,看到很多人说是灌水,研究生实验报告,Sora 以后有人又说“打脸”
比如说 OpenAI-o3,有答主说 “这是真正的智能爆炸,断崖式提升”,然后评论区说 “下次换个话术”
身边的故事,近期审了不少论文,发现大家对于宣称 SoTA 的工作越来越严苛了。往年那种先 SoTA 再故事的论文,眼看着被连环拒。作者喊着性能无敌,审稿人 borderline reject
想了一些东西,也对 论文写作指南(https://github.com/hzwer/WritingAIPaper) 做了点补充
ACNet 到 RepVGG 的现象上升
聊个大佬朋友的例子, @丁霄汉 说 RepVGG 其实可以叫 ACNetv2
简单来说 ACNet 就是训练的时候三个卷积核,推理的时候合成一个