工程优化第二章总结

比较重要的

  • 多元函数梯度和Hesse矩阵
  • 多元函数极值和判别
  • 凸集和凸函数

多元函数的梯度和Hesse矩阵

多元函数分类:
多元函数分类
偏导数定义
偏导数定义

二元函数的可微性
如果二元函数 z = f(x1, x2)在定义域 D 的内点(x1,x2)处全增量∆z = f(x1+∆x1,x2+∆x2) - f(x1,x2);
可表示成 ∆z= A∆x1 + B∆x2 + o(ρ), ρ=(∆x12+∆x22)1/2;
称f(x1,x2)在点(x1,x2)可微,A∆x1 + B∆x2称为函数f(x1,x2)在点(x1,x2)的全微分,记作 dz=df=A∆x1 + B∆x2 ;
满足:
可微判别
则函数f可微。
向量表示:∆x 和 l 都为向量
可微判别向量表示
多元函数可微性
多元函数可微判别
定理:可微必可导
若f(x)在x0处可微,则f(x)在该点处关于各变量的一阶偏导数存在.

多元函数梯度:
以f(x)的 n 个偏导数为分量的向量称为 f(x) 在x处的梯度,记为∇f(x)

方向导数
方向导数
方向导数对函数的影响
梯度公式
Hesse矩阵:(简单来说就是梯度的梯度)
Hesse矩阵
常用梯度和Hesse矩阵公式
其中I为nxn的单位阵E;

Taylor展开


多元函数极值和判别条件

二元函数取极值的必要条件
极值点必要条件
函数在(x0,y0)取极值且可微,则在此点处一阶偏导为0.
可微的极值点一定是驻点,反之不一定成立。

二元函数去极值点的充分条件
二元函数去极值点的充分条件
延伸——多元函数的必要条件和充分条件
多元函数的必要条件
多元函数充分条件

无约束优化
一阶必要
二阶必要和充分
一阶充分和必要
这里的凸函数与高数中的凸函数不同,函数曲线或曲面往下才为凸,往上则为凹;


等高线

定义(等值线):若一条曲线上任何一点的目标函数值等于同一常数,则称此曲线为目标函数的等值线。

定义(等值面):在三维和三维以上的空间中,使目标函数取同一常数值的面 {x| f(x)=r, r是常数} 称为目标函数的等值面。

定理:若多元函数在其极小点处的 Hesse 阵正定,则它在这个极小点附近的等值面近似地呈现为同心椭球面族。


多元函数分析

二次型:代数学中将特殊的二次函数f(x)=1/2 xTQx称为二次型。 x为向量

定义:设Q为n×n对称矩阵

  • ∀x∈Rn,x≠0,均有xTQx > 0,则称矩阵Q是正定的
  • ∀x∈Rn,均有xTQx >= 0,则称矩阵Q是半正定的
  • 若-Q是正定的,则称Q是负定的
  • 若-Q是半正定的,则称Q是半负定的

一般判断是否是正定矩阵求矩阵的顺序主子式,全大于0则为正定矩阵。

定理:若二次函数f(x)=1/2 xTQx + bTx + c 中Q正定,则它的等值面是同心椭球面族,且中心为x* = -Q-1b。
且如果f(x)的Hesse矩阵为正定矩阵,则x*为他的唯一极小值。


凸集、凸函数、凸规划

凸函数定义:若f’'(x)>=0,则f(x)是凸的。
即函数图像是往下的。反之则为凹函数。

凸集:若集合D中任意两点的连线都属于D,则称为凸集。
空集和单元集也是凸集。
等价定义
即,任意的两点的连线都属于D。没有凹入部分,也没有空洞。
图例
例题&定理
例1: 证明集合 S = { x∣Ax = b } 是凸集。其中A为 m×n矩阵,b为m维向量。
通过定义证明;

例2: 集合H={x|s∈Rn,cTx=b}是凸集, 称为超平面,c为n维向量

例3:邻域N(x0, δ ) = { x | || x - x0 || < δ ,δ > 0 } 是凸集。
性质+定义
这个图比较重要,可能考试会考

凸包和凸锥
不重要,走个过场

凸函数
凸函数定义
若进一步有上面不等式以严格不等式成立(即<),则称 f(x)为凸集D 上的严格凸函数。

凸函数性质

  • 性质1: f(x) 为凸集 S 上的凸函数⇔ S 上任意有限点的凸组合的函数值不大于各点函数值的凸组合。
  • 性质2:设 f1, f2 是凸集D上的凸函数
    1. 设a, b > 0, 则af1+bf2 是凸函数;
    2. f(x)= max{ f1(x) , f2 (x) } 是凸函数。

判定定理
一阶条件
二阶条件

判定凸函数

凸规划:考虑如下非线性规划
凸规划
当f(x),gi(x)(i=1,2,…,m)都是凸函数时,称(1)为凸规划。

性质
性质1:设(1)为凸规划,则
i) (1)的可行集R是凸集;
ii) (1)的最优解集是凸集;
iii) (1)的任何局部极小点都是全局极小点。

性质2:设(1)为凸规划,若f(x)在非空可行集R上是严格凸函数,则(1)的全局极小点是唯一的。

为什么凸在最优化中如此特殊

  • 凸集有非空的相对内部;
  • 凸集是连通的并且在任意点具有可行方向;
  • 凸函数的局部极小点都是全局极小点;
  • 可微凸函数的任一驻点都是全局极小点。

关于范数的几个重要不等式

向量运算:x , y ∈ Rn (比较重要)
x , y 的内积:<x,y>=xTy = Σ xi*yi = x1y1+ x2y2+ …+ xnyn

x , y 的距离: ‖x-y‖= [(x-y)T(x-y)](1/2)

x的长度:||x||=[xTx](1/2)

三角不等式: ‖x + y‖≤‖x‖+‖y‖

向量范数
范数

定义
定义1

定义2

(不是很重要)
Cauchy-Schwarz
定理1
定理2

定理3

Young不等式
Holder&Minkowshi不等式


序列极限

(不是很重要)

序列收敛
聚点
由极限的性质可知,如果无穷序列有界,则这个序列必有聚点.

Cauchy列

定理6

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值