- 博客(48)
- 收藏
- 关注
转载 2021-08-13
redhat7解决ifconfig时ens33没有ip地址使用·root权限ONBOOT=no改为yes退出重启网卡使用·root权限su rootONBOOT=no改为yes1 cd /etc/sysconfig/network-scripts/ 2 vi ifcfg-ens33 退出重启网卡 service network restart 搞定...
2021-08-13 10:15:03
291
原创 人脸口罩数据集的模型训练以及戴口罩识别检测
人脸口罩数据集的模型训练以及戴口罩识别检测一.理解人脸图像特征的各种方法HOG特征的提取与计算步骤Dlib人脸特征检测原理(1)提取特征点(2)获取特征数据集写入csv(3)计算特征数据集的欧氏距离作对比二、人脸口罩数据集的下载及处理三、摄像头采集自己人脸、并对表情作出判断。一.理解人脸图像特征的各种方法1)方向梯度直方图方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局
2020-07-06 21:47:33
16392
5
翻译 结合yolo的ROS智能车实现
结合yolo的ROS智能车实现1、搭建智能车环境2、启动仿真3.下载darknet_ros包4.编译5.运行程序6.运行结果1、搭建智能车环境1、下载包进行编译1.1、下载源码包git clone https://github.com/xmy0916/racecar.git进入到工作空间下编译cd catkin_ws/catkin_makecontrollers相关sudo apt-get install ros-melodic-gazebo-ros-controlsudo apt
2020-07-06 01:18:56
1757
原创 基于matlab---多径信道仿真
多径信道仿真仿真要求仿真方案详细设计matlab代码仿真要求通过一个简单的模拟程序来说明多径衰落信道的特点,针对影响信道的两个重要参数2径,移动台速度来说明相干带宽、相干时间的定义。仿真方案详细设计其中接收端离发射端距离为d,反射处离发送端距离为L。简化发送端发送的信号为正弦信号:接收端接收到的信号有2路,一路是发射机直接到接收端,另一路经过发射机发射再反射到达接收端。考虑信号在传输过程中的损耗,电磁波损耗随着传输距离按平方规律衰减,相应的电场强度按1/d规律衰减。在 t 时刻接收到的信号为:
2020-06-16 17:49:10
6772
原创 python--Ubuntu18上基于YoloV4 的Keras物体识别
基于卷积神经网络的图像分类什么是过拟合什么是数据增强python代码Using convnets with small datasetsTraining a convnet from scratch on a small datasetThe relevance of deep learning for small-data problemsDownloading the dataBuilding our networkData preprocessingUsing data augmentation什么
2020-06-09 19:55:43
594
原创 基于matlab仿真实验---16QAM调制与解调
基于matlab仿真实验---16QAM1.仿真要求2.三、仿真方案详细设计16QAM 调制原理:16QAM 解调原理:3.仿真代码仿真结果1.仿真要求用基带等效的方式仿真16-QAM在AWGN信道下的误码率和误比特率性能,并与理论值相比较。2.三、仿真方案详细设计16QAM 调制原理:16QAM 是用两路独立的正交 4ASK 信号叠加而成, 4ASK 是用多电平信号去键控载波而得到的信号。正交幅度调制是利用多进制振幅键控( MASK )和正交载波调制相结合产生的。 16 进制的正交振幅调制是一
2020-06-08 23:51:07
8676
1
原创 基于matla的RSSI测距定位技术性能仿真
基于matla的RSSI测距定位技术性能仿真RSSI原理仿真要求仿真代码1.TOALLOP.m2.Parameter_est.m3.RSSImain.m仿真结果RSSI原理RSSI(Received Signal Strength Indicator)是接收信号的强度指示,它的实现是在反向通道基带接收滤波器之后进行的。RSSI是射频信号理论术语,主要应用于发射机和接收机之间的距离测量。该方法是依据接收信号能量强度确定距离,对通信信道参数要求较高。其测距理论是:依据无线电波或声波在介质中传输,信号功率是
2020-06-03 23:22:07
2144
原创 基于matlab实现MSK的调制与解调
基于matlab实现MSK的调制与解调1.MSK2.matlab代码实现MSK调制与解调filter的创建3.实验结果1.MSK最小频移键控MSK (Minimum Shift Keying)是一种改变波载频率来传输信息的调制技术,即特殊的连续相位的频移键控 (CPFSK)。其最大频移为比特速率的1/4,即MSK是调制系数为0.5的连续相位的FSK。介绍:在数字调制中,最小频移键控(Minimum-Shift Keying,缩写:MSK)是一种连续相位的频移键控方式,在1950年代末和1960年代产
2020-06-01 18:17:15
9556
4
原创 SIFT-ORB比较
SIFT原理与应用初探导入需要用到的包验证旋转不变性import numpy as npimport cv2import cv2 as cvfrom matplotlib import pyplot as plt使用cv2.xfeatures2d.SIFT_create()实例化SIFT函数,并且设置FLANN参数设计sift = cv2.xfeatures2d.SIFT_create()orb = cv.ORB_create()# FLANN 参数设计FLANN_INDEX
2020-05-26 20:11:38
1926
原创 解决--opencv问题
module 'cv2.cv2' has no attribute 'xfeatures2d'步骤1步骤2步骤1卸载opencv pip install opencv_python==3.4.2.16 pip install opencv-contrib-python==3.4.2.16步骤2重装opencv-python、opencv-contrib-python。指定版本安装。 pip install opencv_python==3.4.2.16 pip install op.
2020-05-26 17:46:58
245
原创 基于python与matlab的TOA定位算法性能仿真
基于python与matlab的TOA定位算法性能仿真仿真要求仿真方案的设计matlab仿真代码python仿真代码仿真结果仿真要求要求一:编写两个函数TOA_LLOP和TOA_CHAN得到位置的估计。要求二:用RMSE实现两种算法的性能比较, 得到两种算法的RMSE曲线对比图,横坐标为噪声方差,纵坐标为RMSE。仿真方案的设计主函数设计三个接收机的位置和移动台的位置得到范围矩阵初始化误差为0多次循环矩阵元素全部平方得到新矩阵求均方根误差函数toallop取出矩阵的行数、列数将矩
2020-05-25 19:46:22
3267
4
原创 SVM算法理解以及编程练习
SVM算法理解以及编程练习支持向量机如何找到超平面最大间隔分类器代码练习理解代码1代码2代码3代码4支持向量机支持向量机就算法作为机器学习的经典算法,从被提出后快速发展,在很多场景和领域都取得了非常好的效果,同时兼有速度块、支持数据量大等特点使其在工程实践中得到广泛应用。首先我们先来看一个3维的平面方程:Ax+By+Cz+D=0这就是我们中学所学的,从这个方程我们可以推导出二维空间的一条直线:Ax+By+D=0那么,依次类推,更高维的空间叫做一个超平面。二维空间的几何表示:SVM的目标是找到
2020-05-24 11:47:18
964
转载 兴趣使然
中文名称 :自动关机命令系 统: windows应 用: 计算机类 型: 电脑软件系统中常见的自动关机的命令shutdown -a 取消关机shutdown -s 关机shutdown -f 强行关闭应用程序。shutdown -m \计算机名 控制远程计算机。shutdown -i 显示图形用户界面,但必须是Shutdown的第一个参数。shutdown -l 注销当前用户。shutdown -r 关机并重启。shutdown -s -t时间 设置关机倒计时。 设
2020-05-20 17:19:32
377
原创 对鸢尾花数据集和月亮数据集,分别采用线性LDA、k-means和SVM算法进行二分类可视化分析
对鸢尾花数据集和月亮数据集,分别采用线性LDA、k-means和SVM算法进行二分类可视化分析知识理解1.线性LDA2.k-means3.SVM鸢尾花数据集算法可视化1.使用线性LDA对鸢尾花数据集聚类2.使用k-means对鸢尾花数据集聚类3.使用SVM对鸢尾花数据集聚类月亮数据集算法可视化1.使用线性LDA对月亮数据集聚类2.使用k-means对月亮数据集聚类3.使用SVM对月亮数据集聚类知识理解1.线性LDA线性判别式分析(Linear Discriminant Analysis),简称为LDA
2020-05-17 14:21:53
1521
1
原创 基于Kdevelop的VO框架以及特征提取与匹配
基于Kdevelop的VO框架以及特征提取与匹配准备工作将源码中0.2文件提取1.打开源码文件中3rdparty2.打开Sophus文件3.然后在0.2文件夹下新建build进行编译4.修改default.yaml中路径将源代码中tools associate.py文件复制到数据集中运行程序在KDevelop中运行1.导入项目2.添加数据集准备工作这里提供源码源码提取地址提取码:94hv里面有需要的sophus工具 以及associate.py文件将源码中0.2文件提取1.打开源码文件中3r
2020-05-16 15:10:29
389
原创 通过阿里云和宝塔搭建个人网站或博客
通过阿里云和宝塔搭建个人网站或博客实名认证云服务器ECS开放相应端口添加网站一键部署个人博客配置网站域名配置(配置之后可以通过域名去访问自己的网站)wordpress网站美化网站部分内容()搭建一个自己的服务器是一件非常有意思的事情,而且非常简单,感兴趣的小伙伴可以尝试来搭建一下。实名认证这里点击右边的用户头像处 ,将你的阿里用户实名先实名认证,再学生认证填写相关学生信息后:云服务器ECS你首先你需要去阿里云购买一个服务器,购买之后点击学生认证后的链接,或者点击这里,一键购买学生服务器
2020-05-14 19:46:43
2030
3
原创 人工智能数据--将数据分类并可视化显示。
实验目的:将计科18大类学生分成 3~4个类型。将其可视化显示出来。然后,根据18级物联网分流名单,计算物联1801、物联1802两个班的学生的学生类型占比,输出物联18两个班的学生类型分布饼图。注:本次代码需要熟练掌握python对excel操作数据表1:数据表2:from sklearn import datasetsimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeans#导入import pandas a
2020-05-13 00:36:35
1093
原创 (总结)python--视频与图片之间的转换并制作为3d旋转相册展示
视频与图片之间的转换并制作为3d旋转相册展示准备一个自己喜欢的短视频将视频转换为图片将图片制作为3d旋转相册1.总体结构展示2.css文件代码3.html文件代码图片转换为gif由于某种原因 想要搞怪一下准备一个自己喜欢的短视频将视频转换为图片import cv2def getFrame(videoPath, svPath): cap = cv2.VideoCapture(videoPath) numFrame = 0 while True: if ca
2020-05-11 06:56:53
4588
3
原创 python--将视频转换为图片
害!!前不久学习了怎么使用python代码将图片变为gif这次因需要将视频转换为图片,所以记录一下学习过程import cv2def getFrame(videoPath, svPath): cap = cv2.VideoCapture(videoPath) numFrame = 0 while True: if cap.grab(): flag, frame = cap.retrieve() if not fl
2020-05-11 05:57:02
552
原创 图片序列的特征匹配
图片序列的特征匹配准备图片集computeORB2.cpp代码运行可执行文件准备图片集创建cpp文件这里命名为computeORB2gedit computeORB2.cppcomputeORB2.cpp代码代码如下:#include <opencv2/opencv.hpp> #include <iostream>#include <vector&...
2020-05-07 10:50:19
434
1
原创 GIF动态图片制作
首先我们需要用到库imageiopip install imageio首先需要创建一个list来存放你制作gif的图片image_list = [r'C:/Users/Administrator/Desktop/code/jrx/matches' + str(x) + ".png" for x in range(0,5)]使用此方法需要将你图片名字改为同一类名字这里使用for循环来...
2020-05-07 10:47:50
325
原创 大数据实验hadoop--通过编程实现数据去重排序并导出jar在终端运行
通过编程实现数据去重排序并导出jar在终端运行题目内容创建word3、word4启动hadoop打开eclipse编写代码本次实验中创建的class是在上一次wordcount中完成的 (因此导入的jar与上次一致) 可参考那篇博客导包:参考地址题目内容对数据文件中的数据进行去重。数据文件中的每行都是一个数据。输入如下所示:2012-3-1 a2012-3-2 b2012-3-3...
2020-05-06 18:26:42
1159
原创 大数据实验hadoop--通过编程实现词频统计并导出jar在终端运行
通过编程实现词频统计并导出jar在终端运行创建词文件夹打开eclipse编写程序1.导入需要的jar2.创建package3.创建class编写代码导出jar打开hadoop创建词文件夹mkdir wordcount进入文件夹创建两个词文档vim word1.txtvim word2.txt打开eclipse编写程序1.导入需要的jar导入此路径下所有jar(下同)...
2020-05-06 17:26:04
1814
原创 机器学习--Iris数据集的Fisher线性分类以及数据可视化技术的学习
Iris数据集的Fisher线性分类以及数据可视化技术的学习Iris数据集的Fisher线性分类数据可视化技术的学习1.数据集介绍2.观看数据前5行Iris数据集的Fisher线性分类import pandas as pdimport numpy as npimport matplotlib.pyplot as plt path=r'./Iris.xls'df = pd.read_cs...
2020-05-05 09:49:30
1799
原创 机器学习--Fisher线性判别
Fisher线性判别Fisher判别法介绍Fisher线性判别Fisher准则函数的定义python代码实现Fisher判别法介绍Fisher判别法是判别分析的方法之一,它是借助于方差分析的思想,利用已知各总体抽取的样品的p维观察值构造一个或多个线性判别函数y=l′x其中l= (l1,l2…lp)′,x= (x1,x2,…,xp)′,使不同总体之间的离差(记为B)尽可能地大,而同一总体内的离差...
2020-05-05 01:20:20
3690
原创 常用正则表达式
总结一些常用正则表达式,方便记忆。模式描述.匹配除 “\n” 之外的任何单个字符。要匹配包括 ‘\n’ 在内的任何字符,请使用象 ‘[.\n]’ 的模式。\d匹配一个数字字符。等价于 [0-9]。\D匹配一个非数字字符。等价于 [^0-9]。\s匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。\S匹配任何非...
2020-04-28 15:49:40
121
1
原创 超详细解析python爬虫爬取京东图片
超详细图片爬虫实战实例讲解(京东商城手机图片爬取)1.创建一个文件夹来存放你爬取的图片2.第一部分代码分析3.第二部分代码分析完整的代码如下所示:升级版代码:爬取过程中首先你需要观察在手机页面变化的过程来使用正则表达式匹配源码中图片的链接然后在保存到本地其次就是信息过滤,出除了你需要的手机图片以外的其他信息过滤掉:可通过查看网页代码找到图片的起始以及结束的代码爬取过程:1)建立一个爬取图片...
2020-04-28 12:00:41
5585
2
原创 jupyter快捷键总和
Enter : 转入编辑模式Shift-Enter : 运行本单元,选中下个单元Ctrl-Enter : 运行本单元Alt-Enter : 运行本单元,在其下插入新单元Y : 单元转入代码状态M :单元转入markdown状态R : 单元转入raw状态设定 1 级标题设定 2 级标题设定 3 级标题设定 4 级标题设定 5 级标题设定 6 级标题Up : 选中上方单元K...
2020-04-28 09:39:59
547
原创 python爬虫--正则表达式与Cookie的使用
正则表达式与Cookie的使用正则表达式:描述字符串排列的一套规则原子1.普通字符作为原子2.非打印字符作为原子3.通用字符作为原子原子表[]:原子表(正则表达式:[xyz]py;源字符串:xpython可以匹配出xpy)[^]:代表的是除了中括号里面的原子均可以匹配([^xyz]py可以匹配apy但不能匹配xpy)元字符理解各元字符的含义1.任意匹配元字符"."匹配任意一个除换行符以外的任意字符...
2020-04-27 10:47:23
704
原创 python爬虫--Urllib库与URLError异常处理
Urllib库与URLError异常处理1.关闭该文件2.清除retrieve执行之后的缓存3.返回环境有关信息4.获取当前网页状态码 (只有200正确)对网址编码.解码Headers属性1.使用build_opener()修改报头2. 使用urllib.request.Request()下的add_header()添加表头超时设置 timeouthttp协议请求实战编码问题pos...
2020-04-27 10:45:06
968
原创 对模型评估与旋转中名词定义和手写体Mnist数据集中10个字符 (0-9)的分类识别
名词定义和分类识别名词定义手写体Mnist数据集中10个字符 (0-9)的分类识别三级目录名词定义1.查准率查准率(精度)是衡量某一检索系统的信号噪声比的一种指标,即检出的相关文献量与检出的文献总量的百分比。普遍表示为:查准率=(检索出的相关信息量/检索出的信息总量)x100%。使用专指性较强的检索语言(如上位类、上位主题词)能提高查准率,但查全率下降。2.查全率查全率(召回率),是衡量...
2020-04-26 16:03:52
777
原创 python 对excel操作用法详解
python-对excel操作用法详解读excel1.打开excel文件2.获取行数和列数3.获取整行和整列的值,以列表形式返回4.获取单元格数据5.使用行列索引来获取单元格数据写excel1.创建workbook2.创建一个sheet对象,一个sheet对象对应Excel文件中的一张表格3.向表中添加数据4.保存追加数据读excelimport xlrd1.打开excel文件data ...
2020-04-23 17:04:50
1267
1
原创 人工智能之--什么是凸函数以及如何判断一个函数是否为凸函数
什么是凸函数以及如何判断一个函数是否为凸函数凸函数的定义如何判断一个函数是否是凸函数Jensen不等式相关问题部分内容转载于:https://www.cnblogs.com/always-fight/p/9377554.html凸函数的定义1.对于一元函数f(x),如果对于任意tϵ[0,1]均满足:f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),则称f(x)为凸函数(con...
2020-04-21 17:49:55
20153
原创 python中线性规划中的单纯形法、scipy库与非线性规划求解问题
单纯形法、scipy库与非线性规划求解问题单纯形法的基本定义大M法求解线性规划的原理excel求解Python调用optimize包和scipy求解线性规划Python编程实现单纯形法对比情况非线性规划单纯形法的基本定义单纯形法的基本定义:一般线性规划问题中当线性方程组的变量数大于方程个数,这时会有不定数量的解,而单纯形法是求解线性规划问题的通用方法。 具体步骤是,从线性方程组找出一个个的单...
2020-04-19 14:49:02
2202
原创 Ubuntu18下安装配置以及运行ORB_SLAM2
安装配置以及运行ORB_SLAM2这里提前将opencv slam2 数据集安装包分享出来方面操作在安装过程中遇到问题可参考我的另一篇博客安装需要工具安装pangolin安装OpenCV安装Eigen3安装ORB-SLAM2运行单目SLAM实例实时运行ORB-SLAM2这里提前将opencv slam2 数据集安装包分享出来方面操作链接:下载地址提取码:fl4o在安装过程中遇到问题可参...
2020-04-17 12:09:28
533
2
原创 解决ubuntu磁盘分区不足的问题
扩充磁盘方法扩充磁盘扩充分区磁盘单单扩充系统磁盘你会发现还是未能解决问题关键所在:磁盘分区满了 扩充总磁盘没有作用环境:ubuntu18扩充磁盘查看磁盘信息右击虚拟机点开设置扩展磁盘扩充分区磁盘...
2020-04-17 11:27:54
963
原创 Ubuntu18下安装配置以及运行ORB_SLAM2踩过的坑
安装配置ORB_SLAM2出现的问题以及解决办法安装Pangolin出现‘No package ‘xkbcommon’ found’make -jx卡死安装opencv出现fatal error: can’t write PCH file: No space left on device编译ORB-SLAM2出现问题卡在96%被杀死 xxx.cc error:‘usleep’ was not d...
2020-04-17 11:16:55
1851
1
转载 常见的user-Agent的值
User-Agent:的值Chrome(谷歌)Win7:Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1Win10:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit...
2020-04-16 13:23:06
2685
原创 大数据平台技术实验三---HBase分布式数据库操作与编程
HBase分布式数据库操作与编程1.HBase 配置并完成javac程序练习2.HBase Shell数据库表创建3.HBase Shell数据访问操作4.HBase Java API编程(1).createTable(String tableName, String[] fields)(2).addRecord(String tableName, String row, String[] fie...
2020-04-14 14:18:19
10755
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人