使用TensorFlow创建可自动玩游戏的DQN模型-CSDN公开课-专题视频课程

使用TensorFlow创建可自动玩游戏的DQN模型—2771人已学习
课程介绍    
201704181711416567.jpg
    深度强化学习(DQN)是人工智能领域热门的方向之一,吸引众多AI领域的优秀科学家去发掘,其通用性在各领域备推崇,本次课程集中讲解DQN及其TensorFlow的实现。 讲师:黄文坚,《TensorFlow实战》作者、PPmoney大数据算法总监
课程收益
    1. 强化学习简介; 2. 策略网络和估值网络; 3. 训练估值网络(Deep-Q Network)的技巧; 4. 实际使用TensorFlow实现一个Deep-Q Network来学习自动玩游戏。
讲师介绍
    CSDN公开课 更多讲师课程
    CSDN线上公开课全掌握!
课程大纲
    1. 使用TensorFlow创建可自动玩游戏的DQN模型(上)  37:43
    2. 使用TensorFlow创建可自动玩游戏的DQN模型(下)  37:47
大家可以点击【 查看详情】查看我的课程
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值