小米速度!雷军再祭 All in AIoT 大招!

640?wx_fmt=gif

“AIoT是小米核心战略!” —— 雷军

 

如何挑战百万年薪的人工智能!

https://edu.csdn.net/topic/ai30?utm_source=csdn_bw

640?wx_fmt=jpeg

继数日前将人工智能与云平台部一分为三,崔宝秋挂帅集团技术委员会后,小米再一次进行了组织架构调整!

北京时间 3 月 7 日,小米集团创始人、董事长兼 CEO 雷军再次签发任命文件,宣布成立 AIoT 战略委员会,隶属于集团技术委员会,任命 IoT 平台总经理范典为 AIoT 战略委员会主席,负责促进 AIoT 相关业务和技术部门的协同,推动战略落地执行。

640?wx_fmt=jpeg

从去年雷军喊出“AI + IoT 是小米未来的核心战略”并正式推出开发者激励计划 —— 小米 AIoT 开发者基金,以及宣布将在未来 5 年持续投入超过 100 亿元,到今天从雷军所签发的任命文件中,可以看到 AIoT 战略委员会委员分别由 IoT 平台部、人工智能部、生态链部等小米数十个核心业务部门负责人组成,我们能够明显地看到小米在 AIoT 战略上的决心与执行力。

 

而除了 AIoT 战略之外,雷军同时还在着手 5G 布局,雷军认为,5G 就是手机业务的春天。5G 时代来临,将会带动智能手机行业新一波换机潮。并且,“5G 是数字经济新引擎,产业应用不限于智能手机、基站建设等领域,更会推动物联网、区块链、视频社交、人工智能产品与应用的发展。由于 5G 技术能满足机器类通信、大规模通信、关键性任务通信对网络速率、稳定性和时延的高要求,因此物联网应用场景十分广泛,尤其与车联网、无人驾驶、超高清视频、智能家居等产业深度融合,进一步应用到制造业、农业、医疗、安全等领域,为各行各业带来新的增长机遇。”

由此,在两会上,雷军建言“提前布局 5G 产业应用,推动 5G 与物联网的创新融合发展”,重点谈到:加速工业物联网应用,助力工厂智能化转型;发展智慧农业,助推“乡村振兴”战略实施;发展无人驾驶与车联网,提高交通智能化程度;普及医疗物联网应用,助力“健康中国”建设。

 

640?wx_fmt=jpeg

 

 热 文 推 荐 

☞ 华为起诉美国政府!

☞ 火速拿来用!对比 12,000 个 Vue.js 开源项目发现最实用的 TOP45!

☞ @00 后 IT 大佬们,有个编程问题请教下

☞ 女神节该送程序媛什么礼物?保命指南来了!| 程序员有话说

☞ 小学生手写 Python 程序解魔方!这是高手,这绝对是高手!

☞ 小团队的微服务之路

首发 | 旷视14篇CVPR 2019论文,都有哪些亮点?

两会第一天, 大佬们关于区块链的探讨, 你要了解的都在这了

☞ 神操作!这段代码让程序员躺赚200万?给力!

 

print_r('点个好看吧!');
var_dump('点个好看吧!');
NSLog(@"点个好看吧!");
System.out.println("点个好看吧!");
console.log("点个好看吧!");
print("点个好看吧!");
printf("点个好看吧!\n");
cout << "点个好看吧!" << endl;
Console.WriteLine("点个好看吧!");
fmt.Println("点个好看吧!");
Response.Write("点个好看吧!");
alert("点个好看吧!")
echo "点个好看吧!"

640?wx_fmt=gif点击阅读原文,输入关键词,即可搜索您想要的 CSDN 文章。

640?wx_fmt=png喜欢就点击“好看”吧!

数据集介绍:多品类农产品目标检测数据集 一、基础信息 数据集名称:多品类农产品目标检测数据集 图片数量: - 训练集:5,744张图片 - 验证集:546张图片 - 测试集:271张图片 总计:6,561张农业场景图片 分类类别: 覆盖33种常见农产品,包括苹果、香蕉、胡萝卜、番茄、西瓜等主流果蔬,以及甜椒、花椰菜、生姜、豆等特色农作物,完整涵盖从根茎类到叶菜类的多样化需求。 标注格式: YOLO格式标注,包含标准化边界框坐标及类别索引,支持主流目标检测框架直接调用。 数据特性: 农业场景实拍图像,包含自然光照条件下的单目标与多目标检测场景,适用于真实农业环境下的模型训练。 二、适用场景 农业自动化分拣系统: 为果蔬分拣机器人提供视觉识别能力,支持多品类农产品同步检测,提升自动化产线分拣效率。 智能零售库存管理: 赋能商超智能货架系统,实现农产品自动识别与库存统计,优化生鲜商品周转管理。 精准农业研究: 支持农作物生长监测AI系统开发,通过田间图像实时检测作物分布与成熟度。 农业教育实训: 可作为农业院校AI+农学交叉学科的教学资源,培养智慧农业领域的复合型人才。 三、数据集优势 全品类覆盖: 包含33类全球主流农产品,特别涵盖辣椒、茄子、萝卜等易混淆品种,满足精细化检测需求。 真实场景适配: 数据采集自实际农业环境,包含果蔬堆叠、部分遮挡等复杂场景,确保模型落地实用性。 标注专业化: 采用农业专家参与标注的质量控制机制,边界框精准匹配农产品形态特征。 框架兼容性: 原生支持YOLO系列模型训练,提供.txt标注文件与图像文件的规范目录结构,开箱即用。 应用扩展性强: 除目标检测外,可通过标注转换支持农产品计数、体积估算等衍生应用场景开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值