- 博客(71)
- 收藏
- 关注
原创 QAI AppBuilder 快速上手(10): 图像生成应用实例
Stable Diffusion 是一种先进的图像生成模型,能够根据用户提供的文本描述生成高质量的图像。它利用深度学习技术,通过解析和理解文本内容,创建出逼真且细致的图像。该模型在艺术创作、广告设计、游戏开发等领域具有广泛的应用前景。用户只需输入详细的描述,Stable Diffusion 就能生成符合要求的图像,极大地提高了创作效率和灵感的实现。无论是风景、人物还是抽象艺术,Stable Diffusion 都能为用户提供令人惊叹的视觉效果,成为现代图像生成技术的重要工具。
2025-04-23 11:09:35
1022
原创 QAI AppBuilder 快速上手(9): 人体关键点检测应用实例
OpenPose能够在图像和视频中检测和跟踪人体的多个部位,包括身体、面部、手和脚。OpenPose可以识别和跟踪关键点,其中包括身体/脚关键点、每只手的关键点以及面部关键点。它被广泛应用于体育分析、医疗保健、动画和增强现实等领域。OpenPose采用卷积神经网络(CNN)架构,通过多阶段CNN管道生成部位置信度图和部位亲和场,从而准确确定个体的姿态。
2025-04-08 16:38:27
1066
原创 QAI AppBuilder 快速上手(8): 图像修复应用实例2
LaMa-Dilated是一个高分辨率图像修复模型,专门用于在设备上进行图像的擦除和修复。该模型利用卷积神经网络(CNN)架构,通过扩张卷积技术来处理输入图像,从而实现高效的图像修复。LaMa-Dilated能够在保持图像细节的同时,填补缺失部分,使得修复后的图像看起来更加自然。它广泛应用于图像编辑、增强现实和其他需要高质量图像处理的领域。该模型支持多种设备和平台,包括手机和平板电脑,能够在这些设备上实现实时处理。
2025-04-08 16:30:28
905
原创 探索高通骁龙光线追踪技术
自2022年高通公司推出首款支持硬件实时光线追踪的移动平台以来,光线追踪技术显著提升了手机游戏的视觉效果。越来越多的用户能够在手机上体验到更加逼真的光影效果,享受更高质量的游戏体验。
2025-04-03 17:39:22
844
原创 QAI AppBuilder 快速上手(7): 目标检测应用实例
YOLOv8_det专为高效、准确地检测图像中的物体而设计。它采用了改进的主干网络(Backbone)、Neck 层和解耦头(Decoupled Head)结构,支持多任务处理,包括目标检测、实例分割和关键点检测。YOLOv8_det 在性能和灵活性上有显著提升,适用于各种计算设备和应用场景。
2025-03-17 11:26:12
1227
原创 QAI AppBuilder 快速上手(6): 图像分割应用实例
unet_segmentation模型(U-Net)是一种专门用于图像分割任务的卷积神经网络(CNN),它采用对称的编码器-解码器结构,编码器部分逐步提取图像特征,而解码器部分逐步恢复空间分辨率,从而实现精确的像素级分割。U-Net 在医学影像分析、卫星图像处理和自动驾驶等领域有广泛应用,能够在少量训练数据上取得优异的分割效果
2025-03-17 11:23:06
673
原创 QAI AppBuilder 快速上手(5): 图像分类和识别应用实例
Inception_v3 是一种卷积神经网络模型,主要用于图像分类和识别任务。它通过因式分解卷积来提高计算效率,并引入了批量归一化技术,以增强训练稳定性和收敛速度。Inception_v3 在 ImageNet 数据集上表现出色,具有较高的准确性和较低的计算成本,是图像处理领域的重要工具。
2025-03-11 11:14:32
769
原创 QAI AppBuilder 快速上手(4): 图像超分应用实例2- Real_esrgan_general_x4v3
Real-ESRGAN-General-x4v3 也是一种图像超分辨率模型。该模型基于 ESRGAN(增强型超分辨率生成对抗网络)进行优化,采用了 Residual in Residual Dense Block(RRDB)结构,增强了特征提取能力。此外,模型还使用 U-Net 作为判别器,提供更精确的像素级反馈。通过模拟现实中的图像退化过程,Real-ESRGAN-General-x4v3 能生成更接近真实的低质图像,从而在放大时保留更多细节。
2025-03-11 11:07:11
853
原创 QAI AppBuilder 快速上手(3): 图像修复应用实例1
AOTGAN是一种基于注意力机制的生成对抗网络(GAN)模型,主要用于图像修复任务。本文章主要介绍AOTGAN模型的使用方法,并通过示例演示来进行对模型使用的深入了解。
2025-02-24 11:13:25
1021
原创 QAI AppBuilder 快速上手(2): 图像超分应用实例
Real-ESRGAN-x4plus 是一种图像超分辨率模型,能够将低分辨率图像放大4 倍,同时保持高质量和细节。它不仅可以显著提升图像的清晰度,还具备去噪能力,使得放大的图像更加清晰和自然。这个模型特别适合用于图像增强等应用场景。
2025-02-24 11:11:11
1117
原创 探索高通骁龙游戏超分辨率技术:移动游戏的未来
在移动游戏领域,高通一直致力于游戏性能的优化和画质的提升,结合骁龙处理器不断推出各类解决方案。在2024年,高通就推出了一项令人振奋的新技术——骁龙游戏超分辨率(Snapdragon Game Super Resolution 2,简称GSR2),这项技术将大幅提升移动游戏的体验。
2025-02-14 10:46:23
1250
原创 高通推出骁龙游戏超级分辨率™:充分释放移动游戏性能,带来更持久的续航
高通技术公司持续引领移动游戏技术潮流,推出Snapdragon Elite Gaming全新特性——骁龙游戏超级分辨率(Snapdragon Game Super Resolution™, Snapdragon GSR),充分释放游戏性能,带来更持久的电池续航。
2025-02-14 10:38:05
1371
原创 QAI AppBuilder 快速上手(1): 环境配置
AI-Engine-Direct-Helper 是一个用于简化 AI 模型在 Qualcomm 平台上运行的工具。它主要用于与 Qualcomm® AI Engine Direct(也称为 QNN SDK)配合使用,提供统一的低级 API 以加速 AI 的开发。本文基于 Qualcomm GitHub上开源的代码,介绍了如何为 QAI AppBuilder 自动和手动设置基于x64版本 Python 及 QNN 环境,以方便后续使用 Qualcomm AI应用。
2025-02-12 11:18:09
1028
原创 边缘智能创新应用大赛获奖作品系列三:边缘智能强力驱动,机器人天团花式整活赋能千行百业
边缘智能技术快速迭代,并与行业深度融合。它正重塑产业格局,催生新产品、新体验,带动终端需求增长。为促进边缘智能技术的进步与发展,拓展开发者的思路与能力,挖掘边缘智能应用的创新与潜能,高通技术公司联合阿加犀智能科技主办了“2024高通边缘智能创新应用大赛”。大赛共甄选出 36 个卓越项目,以下为智能机器人赛道中独立开发者、高校开发者和企业开发者的优秀项目分享。
2024-12-16 13:56:45
950
原创 边缘智能创新应用大赛获奖作品系列二:工业质检“火眼金睛”上线,缺陷漏洞一网打尽
边缘智能技术快速迭代,并与行业深度融合。它正重塑产业格局,催生新产品、新体验,带动终端需求增长。为促进边缘智能技术的进步与发展,拓展开发者的思路与能力,挖掘边缘智能应用的创新与潜能,高通技术公司联合阿加犀智能科技主办了“2024高通边缘智能创新应用大赛”。大赛共甄选出 36 个卓越项目,以下为工业智能质检赛道中高校开发者和企业开发者的优秀项目分享。
2024-12-16 13:17:33
970
原创 边缘智能创新应用大赛获奖作品系列一:智能边缘计算✖软硬件一体化,开启全场景效能革命新征程
边缘智能技术快速迭代,并与行业深度融合。它正重塑产业格局,催生新产品、新体验,带动终端需求增长。为促进边缘智能技术的进步与发展,拓展开发者的思路与能力,挖掘边缘智能应用的创新与潜能,高通技术公司联合阿加犀智能科技主办了“2024高通边缘智能创新应用大赛”。大赛共甄选出 36 个卓越项目,以下为边缘智能计算赛道的获奖作品,分别来自独立开发者、高校开发者和企业开发者的优秀项目分享。
2024-12-16 12:54:38
1308
原创 QUICK 调试camera-xml解析
本文主要介绍Camera Sensor Module XML和Camera Sensor XML配置的解析,这中间需要camera的datasheet,查看对应的一些规格和参数。
2024-11-26 16:51:40
1286
原创 高通Quick板上安装编译Ros1 noetic,LeGO_LOAM,FAR_Planner和rslidar_sdk
本文主要介绍在高通Quick板(6490)上编译安装ros1 noetic和定位与建图 LeGO_LOAM,导航 FAR_Planner和rslidar_sdk激光雷达驱动。
2024-11-05 17:52:32
1219
原创 编译安装并刷写高通智能机器人SDK
Qualcomm 智能机器人产品 SDK (QIRP SDK) 2.0 是一个组件集,可帮助您在 Qualcomm 平台上开发机器人功能。此 SDK 适用于 Qualcomm Linux 发行版本。
2024-11-01 15:37:16
792
原创 基于AI-Hub执行Yolo11模型转换和Profiling
YOLO 11是Ultralytics最新发布的YOLO系列模型,专为计算机视觉任务设计。本文介绍使用AI-hub工具,只需要几行代码就可以完成从模型转换到部署云端的手机上去做性能评估。
2024-10-10 14:55:38
577
原创 高通QCS6490开发(十):合并显示多路安防摄像头
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 AIoT应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。本期主要介绍如何在广翼智联FV01开发板上显示多路的安防摄像头。
2024-10-10 14:47:56
767
原创 高通Liunx 系统镜像编译
高通Linux 是一个专为高通物联网 (IoT) 平台设计的综合软件包。它提供了一个统一的 Linux 发行版,旨在简化开发过程。本文介绍使用源代码的方式编译高通Liunx系统镜像过程。
2024-09-11 15:30:33
1632
原创 高通Linux 交叉编译应用程序
高通RB3 Gen2开发版默认搭载的是高通Linux,本文将介绍在x86的主机上,使用交叉编译方法把应用程序代码编译成*.ipk的软件包。
2024-09-11 15:25:31
959
原创 Qualcomm QCS6490 开发板运行高通AI Hub图像超分示例程序
高通的 AI Hub 是一个全新的 AI 模型库,专为搭载骁龙和高通平台的终端设备提供优化的 AI 模型。本文将介绍如何在Qualcomm QCS6490 开发板上部署和运行高通AI Hub提供的图像超分示例程序。
2024-07-04 13:32:04
1703
原创 Qualcomm QCS6490 开发板运行高通AI Hub图像分类程序
高通的 AI Hub 是一个全新的 AI 模型库,专为搭载骁龙和高通平台的终端设备提供优化的 AI 模型。这些模型经过验证,可在不同执行环境中部署,实现卓越的终端侧 AI 性能、降低内存占用并提高能效。本文将介绍如何在Qualcomm QCS6490开发板上运行高通AI Hub图像分类提供的示例Android应用程序。
2024-07-04 11:34:51
1483
1
原创 高通骁龙(Qualcomm Snapdragon)CDSP HVX HTP 芯片简介与开发入门
高通提供了一系列骁龙芯片解决方案。这些SOC上有信号处理DSP模块,称为Hexagon DSP。DSP相比CPU具有低功耗和高算力。随着Hexagon DSP的更新与发展,其在硬件结构、主频和指令级上都有提升。本文提供了一个快速的Hexagon DSP/HVX/HTP演进图。讲解了HTP 硬件架构 以及CDSP 内存模块框图。对CDSP的内存存储结构进行总结。最后,以手机端的一个实例让客户了解如何在骁龙SOC上开始CDSP编程开发入门。
2024-07-02 16:37:47
6110
原创 探索QCS6490目标检测AI应用开发(三):模型推理
在人工智能技术的飞速发展中,目标检测技术已成为智能视频分析领域的明星。本文将带您走进高通QCS6490平台,一探究竟如何利用其强大的硬件能力. 在前文已经介绍了使用Intelligent Multimedia SDK(IM SDK),完成视频的拉流和解码,在本期的文章中,将会介绍如何使用解码后的视频帧结合Yolov8n模型推理。
2024-06-26 18:19:50
1215
原创 探索QCS6490目标检测AI应用开发(二):摄像头视频的拉取和解码
在人工智能技术的飞速发展中,目标检测技术已成为智能视频分析领域的明星。本文将带您走进高通QCS6490平台,一探究竟如何利用其强大的硬件能力,结合Intelligent Multimedia SDK(IM SDK),完成视频的拉流和解码,开发高效能的目标检测AI应用。
2024-06-26 18:05:33
1304
原创 探索QCS6490目标检测AI应用开发(一):Yolov8n模型转换及量化
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《探索QCS6490目标检测AI应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本期主要介绍如何在FV01开发板上开发一个目标检测AI应用程序。
2024-06-26 17:49:59
1786
原创 高通QCS6490开发(九):配置M.2 NVME SSD扩展存储
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 AIoT应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本期主要介绍如何在FV01开发板配置SSD硬盘扩展存储空间。
2024-05-30 11:10:14
1019
原创 高通QCS6490开发(八):配置USB摄像头
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 AIoT应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本期主要介绍如何在FV01开发板上对USB 相机基本参数进行查看和设置。
2024-05-30 11:06:24
913
原创 高通QCS6490开发(七):WIFI设置
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本期主要开发板形态的FV01再Linux系统下如何连接天线及配置WIFI。
2024-05-30 10:58:57
1203
原创 高通QCS6490开发(六):连接使用摄像头
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 AIoT应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本期介绍如何在广翼智联的FV01开发板上连接摄像头和显示预览。
2024-05-15 16:38:04
1004
原创 高通QCS6490开发(五):连接使用LCD屏
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 AIoT应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本文介绍如何在FV01开发板上连接使用LCD显示屏
2024-05-15 16:34:01
544
原创 高通QCS6490开发(四):FV01 AI开发板系统烧录
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 AIoT应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本期主要介绍如何在广翼智联FV01开发板上烧录镜像。
2024-05-15 16:31:38
1034
1
原创 高通QCS6490开发(三):点亮板卡
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 AIoT应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本期主要介绍介绍如何点亮FV01开发板。
2024-05-15 16:27:20
1237
原创 高通QCS6490开发(二)AI板卡接口
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。《高通QCS6490 AIoT应用开发》是介绍如何基于QCS6490平台完成AI+IoT的应用开发的系列文章。 本期主要介绍广翼智联FV01开发板的内部和外部接口,帮助开发者快速上手开发。
2024-05-15 16:23:39
2002
原创 高通QCS6490开发(一): 广翼智联FV01 AI板卡简介
QCS6490是高通公司针对高端物联网终端而优化的SoC,在性能和功耗上有最优的平衡。QCS6490搭载了8核Kryo 670 CPU,Adreno 643 GPU, DSP,ISP 具有较高的性能,AI综合算力达到13TOPS。 《高通QCS6490 AIoT应用开发》是一系列AIoT应用开发文章,介绍如何基于QCS6490平台做AI+IoT的应用开发。本文是系列文章第一期,主要介绍广翼智联FV01 AI开发板, FV01基于QCS6490设计,并且提供丰富的硬件接口,适用于工业和商业的物联网应用。
2024-05-15 16:17:32
2789
原创 ONNX系列: ONNX模型修改
在我们熟悉了ONNX模型各个层级的结构后,我们便可以针对各个结构来对模型进行修改,从而使其更好的适配后端运行时或者特定硬件平台的编译器。ONNX官方提供了一套完整的Python API以供开发者对模型进行自定义修改。本文将结合Python代码,介绍如何使用ONNX官方API来对ONNX模型进行"增删改查"操作。
2024-04-10 10:54:38
3507
1
原创 ONNX系列: ONNX模型结构解析
ONNX 全称为 Open Neural Network Exchange, 是微软提出并推广的一种机器学习模型的开放格式表示,定义了一组通用的算子集、一系列用于构建深度学习模型的模块以及一种通用的文件格式,使得人工智能开发人员能够将模型与各种框架、工具、运行时和编译器一起使用。AI模型部署工程师可以针对 ONNX 这一中间格式来针对不同的硬件平台进行运行时设计和优化,从而实现AI模型设计和模型部署的解耦。本文将重点解析ONNX 模型结构,并演示了如何使用Python脚本定位到ONNX模型各个层面的元素。
2024-03-27 15:40:42
5595
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人