题目(Leetcode70题):爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
/**
用斐波那契数列更省内存和时间
比如说第6阶台阶,其实可以看成是在第4阶台阶迈两阶、在第5阶台阶迈一阶,
所以6阶的方法总数==4阶方法总数+5阶方法总数。
换句话说,An = An-1 + An-2
由此,一个for循环就可以解决了
*/
class Solution {
public int[] table = new int[20]; //用table数组记录1-19阶方法总数(n<20时,只用0ms)
public int k; //k是所求方法总数
public int climbStairs(int n) {
int i;
for(i=1; i<table.length; i++){
k = 0;
table[i] = makeTable(i);
}
k = 0; //注意k归零
return count(n);
}
public int makeTable(int n){
if(n==0) k++;
//比如在只剩下1阶的情况下迈了两阶,这种不符合题目要求,k不用++,直接return
if(n<=0) return k;
int a = makeTable(n-2); //迈两阶
int b = makeTable(n-1); //迈一阶
return k;
}
public int count(int n){
if(n<20){
k += table[n]; //当n<=19,直接加上就return 节省时间
return k;
}
int a = count(n-2);
int b = count(n-1);
return k;
}
}
这道题最惊艳的是,原来斐波那契数列还能这么用。假如题目要求是迈3阶或者2阶,那么An = An-2 +An-3。
换句话说,如果是有特殊规律地变化,其实可以倒过来看,去思考其实这一步是由前面哪些共同构成的,再把通式写出来会简单许多。