Leetcode70 爬楼梯(Java)(节省递归时间)(斐波那契数列应用)

题目(Leetcode70题):爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。

示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶
/**
用斐波那契数列更省内存和时间
比如说第6阶台阶,其实可以看成是在第4阶台阶迈两阶、在第5阶台阶迈一阶,
所以6阶的方法总数==4阶方法总数+5阶方法总数。
换句话说,An = An-1 + An-2
由此,一个for循环就可以解决了
*/

class Solution {
    public int[] table = new int[20];      //用table数组记录1-19阶方法总数(n<20时,只用0ms)
    public int k;                          //k是所求方法总数
    public int climbStairs(int n) {
        int i;
        for(i=1; i<table.length; i++){
            k = 0;
            table[i] = makeTable(i);
        }
        k = 0;     //注意k归零
        return count(n);
    }
    public int makeTable(int n){
        if(n==0)  k++;
        //比如在只剩下1阶的情况下迈了两阶,这种不符合题目要求,k不用++,直接return
        if(n<=0)  return k;     
        int a = makeTable(n-2);   //迈两阶
        int b = makeTable(n-1);   //迈一阶
        return k;
    }
    public int count(int n){
        if(n<20){
            k += table[n];    //当n<=19,直接加上就return  节省时间
            return k;
        }   
        int a = count(n-2);
        int b = count(n-1);    
        return k;
    }
}

这道题最惊艳的是,原来斐波那契数列还能这么用。假如题目要求是迈3阶或者2阶,那么An = An-2 +An-3。
换句话说,如果是有特殊规律地变化,其实可以倒过来看,去思考其实这一步是由前面哪些共同构成的,再把通式写出来会简单许多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值