CENet与Unet

都是用于图像分割,都是编码与解码的网络结构

Unet
在这里插入图片描述
CENet
在这里插入图片描述1.特征提取用的ResNet
2.DAC block 是inception结构和空洞卷积
在这里插入图片描述
3.RMP block 是多个pool 大小的计算结果 上采样 后与输入合并

Centernet 是一种用于目标检测的神经网络模型,它可以在图像中检测出物体的位置和类别。要训练 Centernet 模型使用自己的数据集,你需要按照以下步骤进行操作: 1. 收集数据集:收集包含你感兴趣物体的图像数据集。确保每个图像都带有对应的标注框和类别标签。 2. 准备数据集:将数据集按照特定的格式进行整理,以满足 Centernet 模型的输入要求。通常情况下,Centernet 所需的输入是图像和与之对应的目标框的坐标和类别标签。 3. 划分训练集和验证集:将整个数据集划分为训练集和验证集,用于模型的训练和评估。通常情况下,将数据集按照一定比例(例如80%训练,20%验证)划分即可。 4. 数据增强:为了增加训练数据的多样性和鲁棒性,可以对图像进行一些随机变换,如平移、旋转、缩放、裁剪等。这样可以扩充数据集并提高模型的泛化能力。 5. 训练模型:使用准备好的数据集进行模型训练。可以选择使用已经实现的 Centernet 模型代码库,如CenterNet、YOLOv5等。在训练过程中,需要设置合适的超参数,如学习率、批大小、训练轮数等。 6. 模型评估:使用验证集对训练好的模型进行评估,计算模型在目标检测任务上的性能指标,如精度、召回率、平均精度均值(mAP)等。 7. 模型优化:根据模型评估结果,可以对模型进行优化,如调整超参数、增加训练数据、调整网络结构等。 8.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值