区间特征值求解技术——围道积分法(Contour Intergral Method)

区间特征值问题:求解Ax = λBx 在区间[λmin, λmax]的特征值。

1. 谱切片(Spectrum Slicing)方法

一个常用的方法就是进行格林函数的分解,格林函数定义为G(σ)=(σB - A)^-1,其中σ靠近搜索区间的特征值。其实就是应用谱变换技术,在区间类进行扫描

其实下面提到的CISS和FEAST算法,也算谱切片方法,即“将谱中感兴趣的部分切出来”。

2. CISS(Contour Integral Spectrum Slicing)方法

这个是Sakurai等人提出的方法,已经在Slepc实现了。

该方法是将(A-λB) 投影到一个子空间中,这个子空间是由围道积分计算出来的,该子空间等价于由围道内特征值对应的特征向量所张成的空间

需要注意的是,在复平面,围道是一个区域,在实数范围内,围道就是一个区间

这个方法是基于Raylegh Ritz算法,因此也叫CIRR(Contour Integral Raylegh Ritz)。

计算的特征对作为原问题特征对的近似值。Q的计算需要使用到围道积分。

下面假设围道为一个圆,圆心在γ,半径为ρ。

定义如下的围道积分:

采用N点梯形积分公式来计算:

m是围道内特征值数量,但是子空间的维数M通常要选择大于m,以减小计算误差。

示意图,求解虚线围道内的特征值

3. FEAST算法

FEAST算法是Polizzi从量子力学中的密度矩阵受到启发,在CISS基础上改进的算法。

密度函数ρ定义为格林函数G在围道上的积分。

下面算法中,N是G的维度,M是围道内的特征值。G(z)Y 的计算,需要用到线性方程组求解。

4. 为什么叫G(z)=(zB - A)^-1为Green函数?

在经典物理中,Green函数主要被当做一种求解线性微分方程数学物理方法来使用。在量子物理中,其定义稍显“不同”:

当然其本质还是求解线性微分方程,关于它们之间的联系,详见博客文章:量子物理中Green函数与其广义定义的联系。参考:量子物理中的Green函数定义及其应用 | Mo's Notebook | 摸着羊的笔记本

参考资料:

CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems, Sakurai, 2007

Density-matrix-based algorithm for solving eigenvalue problems, Polizzi, 2009

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值