KDD会议的研究领域

KDD会议涵盖了关联分析、分类与回归、半监督学习、聚类等多方面研究,深入社交网络、图数据挖掘、时空分析等领域,并关注可扩展性、隐私保护与安全性。会议通过不同分会探讨了移动数据挖掘、推荐系统、生物信息学等多个分支,展示了数据挖掘的广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结了一下sigkdd目前的主要研究领域,可以看出来数据挖掘的发展方向和研究热点

具体罗列如下

2012年,KDD会议的研究主题包括以下各方面

关联分析(association analysis)
分类与回归分析算法(classification and regression methods)
半监督式学习(semi-supervised learning)
聚类(clustering)
因式分解(factorization)
迁移学习和多任务学习(transfer and multi-task learning)
特征选择(feature selection)
社交网络(social networks)
图数据挖掘(mining of graph data)
时空数据分析(temporal and spatial data analysis)
可扩展性(scalability)
隐私保护(privacy)
安全性(security)
可视化(visualization)
文本分析(text analysis)
网页挖掘(web mining)
移动数据挖掘(mining mobile data)
推荐系统(recommender systems)
生物信息学(bioinformatics)
电子商务ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值