python自制线性数据集,用线性神经网络训练

文章讲述了如何使用numpy生成线性数据集,添加高斯噪声,然后用csv模块保存。接着,通过pandas读取数据,并用torch构建及训练一个简单的神经网络模型进行回归任务,采用MSELoss作为损失函数和Adam优化器。
摘要由CSDN通过智能技术生成

1、自制一个线性数据集

首先需要安装numpy,生成x和y的数据,使用shuffle函数打乱,使用csv模块保存

import numpy as np
import csv

#定义线性方程的斜率和截距
m = 2
b = 5
#生成x和y数据
x = np.linspace(0,10,100)
y = m*x+b

#加入高斯噪声
mu, sigama = 0,0.5  #噪声的均值和标准差
noise = np.random.normal(mu, sigama, len(y)) #生成随机噪声
noisy_y = y + noise #将噪声加到y数据中

#组合x和y数据为一个二维数组
data = np.column_stack((x,noisy_y))
np.random.shuffle(data) #打乱数据
#打开csv文件并写入数据
with open ('linear_data.csv', mode='w', newline='')as file:
    writer = csv.writer(file)
    writer.writerow(['x','y'])
    writer.writerows(data)

2、读取数据集并训练

要读取已保存为csv文件的数据,可以使用Python的pandas模块进行操作

import pandas as pd

data = pd.read_csv('linear_data.csv')
x = data['x'].to_numpy()
y = data['y'].to_numpy()

使用神经网络训练

import torch
from torch import nn
import torch.optim as optim

class LinearModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(100,10)
        self.fc2 = nn.Linear(10,100)

    def forward(self,x):
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = LinearModel()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
epochs = 1000
for epoch in range(epochs):
    input = torch.from_numpy(x).float()
    targets = torch.from_numpy(y).float()
    optimizer.zero_grad()
    output = model(input)
    loss = criterion(output, targets)
    loss.backward()
    optimizer.step()

    if epoch%100==0:
        print(f'Epoch [{epoch+1}/{epochs}],loss:{loss.item():.4f}')

运行结果

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值