使用Swin-Transformer的图像修复

图像修复是一个从低质量图像中恢复高质量图像的任务。以往通过GAN等方式的图像修复大多是以卷积网络进行的,本文讲解一个基于Swin-Transformer的SwinIR模型,包括:浅层特征提取、深层特征提取和高质量图像重建。

好处有两个:(1)Transformer 可以有效捕捉长距离依赖,Swin Transformer 将自注意力计算限制在分割的不重叠窗口内从而降低计算量;(2) 使用 CNN 在 Transformer Layer 后避免原论文中的层级结构,实现即插即用,同时在 Transformer 中 CNN 可以稳定训练过程与融合特征。

模型细节:

主要由Swin transformer Bolck和RSTB块组成:

对于Swin transformer Block:

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):

    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size, H, W):

    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):


    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)

        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):

        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops


class SwinTransformerBlock(nn.Module):

    def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if self.shift_size > 0:
            attn_mask = self.calculate_mask(self.input_resolution)
        else:
            attn_mask = None

        self.register_buffer("attn_mask", attn_mask)

    def calculate_mask(self, x_size):
        # calculate attention mask for SW-MSA
        H, W = x_size
        img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    def forward(self, x, x_size):
        H, W = x_size
        B, L, C = x.shape
        # assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
        if self.input_resolution == x_size:
            attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, C
        else:
            attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops

class PatchMerging(nn.Module):

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
        return flops


class BasicLayer(nn.Module):

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (i % 2 == 0) else window_size // 2,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, x_size):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, x_size)
            else:
                x = blk(x, x_size)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops

然后是 RSTB:

class RSTB(nn.Module):

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
                 img_size=224, patch_size=4, resi_connection='1conv'):
        super(RSTB, self).__init__()

        self.dim = dim
        self.input_resolution = input_resolution

        self.residual_group = BasicLayer(dim=dim,
                                         input_resolution=input_resolution,
                                         depth=depth,
                                         num_heads=num_heads,
                                         window_size=window_size,
                                         mlp_ratio=mlp_ratio,
                                         qkv_bias=qkv_bias, qk_scale=qk_scale,
                                         drop=drop, attn_drop=attn_drop,
                                         drop_path=drop_path,
                                         norm_layer=norm_layer,
                                         downsample=downsample,
                                         use_checkpoint=use_checkpoint)

        if resi_connection == '1conv':
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == '3conv':
            # to save parameters and memory
            self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                      nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
                                      nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                      nn.Conv2d(dim // 4, dim, 3, 1, 1))

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
            norm_layer=None)

        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
            norm_layer=None)

    def forward(self, x, x_size):
        return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x

    def flops(self):
        flops = 0
        flops += self.residual_group.flops()
        H, W = self.input_resolution
        flops += H * W * self.dim * self.dim * 9
        flops += self.patch_embed.flops()
        flops += self.patch_unembed.flops()

        return flops


class PatchEmbed(nn.Module):

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        flops = 0
        H, W = self.img_size
        if self.norm is not None:
            flops += H * W * self.embed_dim
        return flops


class PatchUnEmbed(nn.Module):


    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

    def forward(self, x, x_size):
        B, HW, C = x.shape
        x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1])  # B Ph*Pw C
        return x

    def flops(self):
        flops = 0
        return flops


class Upsample(nn.Sequential):


    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:  # scale = 2^n
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
        super(Upsample, self).__init__(*m)


class UpsampleOneStep(nn.Sequential):

    def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
        self.num_feat = num_feat
        self.input_resolution = input_resolution
        m = []
        m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
        m.append(nn.PixelShuffle(scale))
        super(UpsampleOneStep, self).__init__(*m)

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.num_feat * 3 * 9
        return flops

最后实现SwinIR:

class SwinIR(nn.Module):
    def __init__(self, img_size=64, patch_size=1, in_chans=3,
                 embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
                 window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
                 **kwargs):
        super(SwinIR, self).__init__()
        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale
        self.upsampler = upsampler
        self.window_size = window_size
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = embed_dim
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # merge non-overlapping patches into image
        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build Residual Swin Transformer blocks (RSTB)
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = RSTB(dim=embed_dim,
                         input_resolution=(patches_resolution[0],
                                           patches_resolution[1]),
                         depth=depths[i_layer],
                         num_heads=num_heads[i_layer],
                         window_size=window_size,
                         mlp_ratio=self.mlp_ratio,
                         qkv_bias=qkv_bias, qk_scale=qk_scale,
                         drop=drop_rate, attn_drop=attn_drop_rate,
                         drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],  # no impact on SR results
                         norm_layer=norm_layer,
                         downsample=None,
                         use_checkpoint=use_checkpoint,
                         img_size=img_size,
                         patch_size=patch_size,
                         resi_connection=resi_connection

                         )
            self.layers.append(layer)
        self.norm = norm_layer(self.num_features)

        # build the last conv layer in deep feature extraction
        if resi_connection == '1conv':
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == '3conv':
            # to save parameters and memory
            self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
                                                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                                 nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
                                                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                                 nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))

        if self.upsampler == 'pixelshuffle':
            # for classical SR
            self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
                                                      nn.LeakyReLU(inplace=True))
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
        elif self.upsampler == 'pixelshuffledirect':
            # for lightweight SR (to save parameters)
            self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
                                            (patches_resolution[0], patches_resolution[1]))
        elif self.upsampler == 'nearest+conv':
            # for real-world SR (less artifacts)
            self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
                                                      nn.LeakyReLU(inplace=True))
            self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            if self.upscale == 4:
                self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
            self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
        else:
            # for image denoising and JPEG compression artifact reduction
            self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
        mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
        return x

    def forward_features(self, x):
        x_size = (x.shape[2], x.shape[3])
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x, x_size)

        x = self.norm(x)  # B L C
        x = self.patch_unembed(x, x_size)

        return x

    def forward(self, x):
        H, W = x.shape[2:]
        x = self.check_image_size(x)
        
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == 'pixelshuffle':
            # for classical SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))
        elif self.upsampler == 'pixelshuffledirect':
            # for lightweight SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.upsample(x)
        elif self.upsampler == 'nearest+conv':
            # for real-world SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
            if self.upscale == 4:
                x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
            x = self.conv_last(self.lrelu(self.conv_hr(x)))
        else:
            # for image denoising and JPEG compression artifact reduction
            x_first = self.conv_first(x)
            res = self.conv_after_body(self.forward_features(x_first)) + x_first
            x = x + self.conv_last(res)

        x = x / self.img_range + self.mean

        return x[:, :, :H*self.upscale, :W*self.upscale]

    def flops(self):
        flops = 0
        H, W = self.patches_resolution
        flops += H * W * 3 * self.embed_dim * 9
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += H * W * 3 * self.embed_dim * self.embed_dim
        flops += self.upsample.flops()
        return flops

训练代码:

def main(json_path='options/train_msrresnet_psnr.json'):

    '''
    # ----------------------------------------
    # Step--1 (prepare opt)
    # ----------------------------------------
    '''

    parser = argparse.ArgumentParser()
    parser.add_argument('--opt', type=str, default=json_path, help='Path to option JSON file.')
    parser.add_argument('--launcher', default='pytorch', help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    parser.add_argument('--dist', default=False)

    opt = option.parse(parser.parse_args().opt, is_train=True)
    opt['dist'] = parser.parse_args().dist

    # ----------------------------------------
    # distributed settings
    # ----------------------------------------
    if opt['dist']:
        init_dist('pytorch')
    opt['rank'], opt['world_size'] = get_dist_info()

    if opt['rank'] == 0:
        util.mkdirs((path for key, path in opt['path'].items() if 'pretrained' not in key))

    # ----------------------------------------
    # update opt
    # ----------------------------------------
    # -->-->-->-->-->-->-->-->-->-->-->-->-->-
    init_iter_G, init_path_G = option.find_last_checkpoint(opt['path']['models'], net_type='G')
    init_iter_E, init_path_E = option.find_last_checkpoint(opt['path']['models'], net_type='E')
    opt['path']['pretrained_netG'] = init_path_G
    opt['path']['pretrained_netE'] = init_path_E
    init_iter_optimizerG, init_path_optimizerG = option.find_last_checkpoint(opt['path']['models'], net_type='optimizerG')
    opt['path']['pretrained_optimizerG'] = init_path_optimizerG
    current_step = max(init_iter_G, init_iter_E, init_iter_optimizerG)

    border = opt['scale']
    # --<--<--<--<--<--<--<--<--<--<--<--<--<-

    # ----------------------------------------
    # save opt to  a '../option.json' file
    # ----------------------------------------
    if opt['rank'] == 0:
        option.save(opt)

    # ----------------------------------------
    # return None for missing key
    # ----------------------------------------
    opt = option.dict_to_nonedict(opt)

    # ----------------------------------------
    # configure logger
    # ----------------------------------------
    if opt['rank'] == 0:
        logger_name = 'train'
        utils_logger.logger_info(logger_name, os.path.join(opt['path']['log'], logger_name+'.log'))
        logger = logging.getLogger(logger_name)
        logger.info(option.dict2str(opt))

    # ----------------------------------------
    # seed
    # ----------------------------------------
    seed = opt['train']['manual_seed']
    if seed is None:
        seed = random.randint(1, 10000)
    print('Random seed: {}'.format(seed))
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

    '''
    # ----------------------------------------
    # Step--2 (creat dataloader)
    # ----------------------------------------
    '''

    # ----------------------------------------
    # 1) create_dataset
    # 2) creat_dataloader for train and test
    # ----------------------------------------
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            train_set = define_Dataset(dataset_opt)
            train_size = int(math.ceil(len(train_set) / dataset_opt['dataloader_batch_size']))
            if opt['rank'] == 0:
                logger.info('Number of train images: {:,d}, iters: {:,d}'.format(len(train_set), train_size))
            if opt['dist']:
                train_sampler = DistributedSampler(train_set, shuffle=dataset_opt['dataloader_shuffle'], drop_last=True, seed=seed)
                train_loader = DataLoader(train_set,
                                          batch_size=dataset_opt['dataloader_batch_size']//opt['num_gpu'],
                                          shuffle=False,
                                          num_workers=dataset_opt['dataloader_num_workers']//opt['num_gpu'],
                                          drop_last=True,
                                          pin_memory=True,
                                          sampler=train_sampler)
            else:
                train_loader = DataLoader(train_set,
                                          batch_size=dataset_opt['dataloader_batch_size'],
                                          shuffle=dataset_opt['dataloader_shuffle'],
                                          num_workers=dataset_opt['dataloader_num_workers'],
                                          drop_last=True,
                                          pin_memory=True)

        elif phase == 'test':
            test_set = define_Dataset(dataset_opt)
            test_loader = DataLoader(test_set, batch_size=1,
                                     shuffle=False, num_workers=1,
                                     drop_last=False, pin_memory=True)
        else:
            raise NotImplementedError("Phase [%s] is not recognized." % phase)

    '''
    # ----------------------------------------
    # Step--3 (initialize model)
    # ----------------------------------------
    '''

    model = define_Model(opt)
    model.init_train()
    if opt['rank'] == 0:
        logger.info(model.info_network())
        logger.info(model.info_params())

    '''
    # ----------------------------------------
    # Step--4 (main training)
    # ----------------------------------------
    '''

    for epoch in range(1000000):  # keep running
        if opt['dist']:
            train_sampler.set_epoch(epoch)

        for i, train_data in enumerate(train_loader):

            current_step += 1

            # -------------------------------
            # 1) update learning rate
            # -------------------------------
            model.update_learning_rate(current_step)

            # -------------------------------
            # 2) feed patch pairs
            # -------------------------------
            model.feed_data(train_data)

            # -------------------------------
            # 3) optimize parameters
            # -------------------------------
            model.optimize_parameters(current_step)

            # -------------------------------
            # 4) training information
            # -------------------------------
            if current_step % opt['train']['checkpoint_print'] == 0 and opt['rank'] == 0:
                logs = model.current_log()  # such as loss
                message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(epoch, current_step, model.current_learning_rate())
                for k, v in logs.items():  # merge log information into message
                    message += '{:s}: {:.3e} '.format(k, v)
                logger.info(message)

            # -------------------------------
            # 5) save model
            # -------------------------------
            if current_step % opt['train']['checkpoint_save'] == 0 and opt['rank'] == 0:
                logger.info('Saving the model.')
                model.save(current_step)

            # -------------------------------
            # 6) testing
            # -------------------------------
            if current_step % opt['train']['checkpoint_test'] == 0 and opt['rank'] == 0:

                avg_psnr = 0.0
                idx = 0

                for test_data in test_loader:
                    idx += 1
                    image_name_ext = os.path.basename(test_data['L_path'][0])
                    img_name, ext = os.path.splitext(image_name_ext)

                    img_dir = os.path.join(opt['path']['images'], img_name)
                    util.mkdir(img_dir)

                    model.feed_data(test_data)
                    model.test()

                    visuals = model.current_visuals()
                    E_img = util.tensor2uint(visuals['E'])
                    H_img = util.tensor2uint(visuals['H'])

                    # -----------------------
                    # save estimated image E
                    # -----------------------
                    save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(img_name, current_step))
                    util.imsave(E_img, save_img_path)

                    # -----------------------
                    # calculate PSNR
                    # -----------------------
                    current_psnr = util.calculate_psnr(E_img, H_img, border=border)

                    logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB'.format(idx, image_name_ext, current_psnr))

                    avg_psnr += current_psnr

                avg_psnr = avg_psnr / idx

                # testing log
                logger.info('<epoch:{:3d}, iter:{:8,d}, Average PSNR : {:<.2f}dB\n'.format(epoch, current_step, avg_psnr))

if __name__ == '__main__':
    main()

要训练SwinIR,对于不同的设置,可能需要更改json文件中的dataroot_Hdataroot_Lscale factornoisel levelJPEG levelG_optimizer_lrG_scheduler_milestones等。最好参考源代码说明:KAIR/docs/README_SwinIR.md at master · cszn/KAIR · GitHub

小伙伴们也可以直接下载已经训练好的模型。

最后是生成图像的代码,主要是修改task、scale和model_path这些参数:

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--task', type=str, default='real_sr', help='classical_sr, lightweight_sr, real_sr, '
                                                                     'gray_dn, color_dn, jpeg_car, color_jpeg_car')
    parser.add_argument('--scale', type=int, default=4, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car
    parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
    parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40')
    parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training SwinIR. '
                                       'Just used to differentiate two different settings in Table 2 of the paper. '
                                       'Images are NOT tested patch by patch.')
    parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
    parser.add_argument('--model_path', type=str,
                        default='model_zoo/swinir/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth')
    parser.add_argument('--folder_lq', type=str, default='testsets/RealSRSet+5images', help='input low-quality test image folder')
    parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
    parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
    parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
    args = parser.parse_args()

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # set up model
    if os.path.exists(args.model_path):
        print(f'loading model from {args.model_path}')
    else:
        os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
        url = 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/{}'.format(os.path.basename(args.model_path))
        r = requests.get(url, allow_redirects=True)
        print(f'downloading model {args.model_path}')
        open(args.model_path, 'wb').write(r.content)

    model = define_model(args)
    model.eval()
    model = model.to(device)

    # setup folder and path
    folder, save_dir, border, window_size = setup(args)
    os.makedirs(save_dir, exist_ok=True)
    test_results = OrderedDict()
    test_results['psnr'] = []
    test_results['ssim'] = []
    test_results['psnr_y'] = []
    test_results['ssim_y'] = []
    test_results['psnrb'] = []
    test_results['psnrb_y'] = []
    psnr, ssim, psnr_y, ssim_y, psnrb, psnrb_y = 0, 0, 0, 0, 0, 0

    for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
        # read image
        imgname, img_lq, img_gt = get_image_pair(args, path)  # image to HWC-BGR, float32
        img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1))  # HCW-BGR to CHW-RGB
        img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device)  # CHW-RGB to NCHW-RGB

        # inference
        with torch.no_grad():
            # pad input image to be a multiple of window_size
            _, _, h_old, w_old = img_lq.size()
            h_pad = (h_old // window_size + 1) * window_size - h_old
            w_pad = (w_old // window_size + 1) * window_size - w_old
            img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
            img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
            output = test(img_lq, model, args, window_size)
            output = output[..., :h_old * args.scale, :w_old * args.scale]

        # save image
        output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
        if output.ndim == 3:
            output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))  # CHW-RGB to HCW-BGR
        output = (output * 255.0).round().astype(np.uint8)  # float32 to uint8
        cv2.imwrite(f'{save_dir}/{imgname}_SwinIR.png', output)

        # evaluate psnr/ssim/psnr_b
        if img_gt is not None:
            img_gt = (img_gt * 255.0).round().astype(np.uint8)  # float32 to uint8
            img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...]  # crop gt
            img_gt = np.squeeze(img_gt)

            psnr = util.calculate_psnr(output, img_gt, crop_border=border)
            ssim = util.calculate_ssim(output, img_gt, crop_border=border)
            test_results['psnr'].append(psnr)
            test_results['ssim'].append(ssim)
            if img_gt.ndim == 3:  # RGB image
                psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True)
                ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True)
                test_results['psnr_y'].append(psnr_y)
                test_results['ssim_y'].append(ssim_y)
            if args.task in ['jpeg_car', 'color_jpeg_car']:
                psnrb = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=False)
                test_results['psnrb'].append(psnrb)
                if args.task in ['color_jpeg_car']:
                    psnrb_y = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True)
                    test_results['psnrb_y'].append(psnrb_y)
            print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNRB: {:.2f} dB;'
                  'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; PSNRB_Y: {:.2f} dB.'.
                  format(idx, imgname, psnr, ssim, psnrb, psnr_y, ssim_y, psnrb_y))
        else:
            print('Testing {:d} {:20s}'.format(idx, imgname))

    # summarize psnr/ssim
    if img_gt is not None:
        ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
        ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
        print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
        if img_gt.ndim == 3:
            ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
            ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
            print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
        if args.task in ['jpeg_car', 'color_jpeg_car']:
            ave_psnrb = sum(test_results['psnrb']) / len(test_results['psnrb'])
            print('-- Average PSNRB: {:.2f} dB'.format(ave_psnrb))
            if args.task in ['color_jpeg_car']:
                ave_psnrb_y = sum(test_results['psnrb_y']) / len(test_results['psnrb_y'])
                print('-- Average PSNRB_Y: {:.2f} dB'.format(ave_psnrb_y))


def define_model(args):
    # 001 classical image sr
    if args.task == 'classical_sr':
        model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
        param_key_g = 'params'

    # 002 lightweight image sr
    # use 'pixelshuffledirect' to save parameters
    elif args.task == 'lightweight_sr':
        model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
                    mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
        param_key_g = 'params'

    # 003 real-world image sr
    elif args.task == 'real_sr':
        if not args.large_model:
            # use 'nearest+conv' to avoid block artifacts
            model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
                        img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                        mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
        else:
            # larger model size; use '3conv' to save parameters and memory; use ema for GAN training
            model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
                        img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
                        num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
                        mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
        param_key_g = 'params_ema'

    # 004 grayscale image denoising
    elif args.task == 'gray_dn':
        model = net(upscale=1, in_chans=1, img_size=128, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='', resi_connection='1conv')
        param_key_g = 'params'

    # 005 color image denoising
    elif args.task == 'color_dn':
        model = net(upscale=1, in_chans=3, img_size=128, window_size=8,
                    img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='', resi_connection='1conv')
        param_key_g = 'params'

    # 006 grayscale JPEG compression artifact reduction
    # use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
    elif args.task == 'jpeg_car':
        model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
                    img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='', resi_connection='1conv')
        param_key_g = 'params'

    # 006 color JPEG compression artifact reduction
    # use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
    elif args.task == 'color_jpeg_car':
        model = net(upscale=1, in_chans=3, img_size=126, window_size=7,
                    img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
                    mlp_ratio=2, upsampler='', resi_connection='1conv')
        param_key_g = 'params'

    pretrained_model = torch.load(args.model_path)
    model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)

    return model


def setup(args):
    # 001 classical image sr/ 002 lightweight image sr
    if args.task in ['classical_sr', 'lightweight_sr']:
        save_dir = f'results/swinir_{args.task}_x{args.scale}'
        folder = args.folder_gt
        border = args.scale
        window_size = 8

    # 003 real-world image sr
    elif args.task in ['real_sr']:
        save_dir = f'results/swinir_{args.task}_x{args.scale}'
        if args.large_model:
            save_dir += '_large'
        folder = args.folder_lq
        border = 0
        window_size = 8

    # 004 grayscale image denoising/ 005 color image denoising
    elif args.task in ['gray_dn', 'color_dn']:
        save_dir = f'results/swinir_{args.task}_noise{args.noise}'
        folder = args.folder_gt
        border = 0
        window_size = 8

    # 006 JPEG compression artifact reduction
    elif args.task in ['jpeg_car', 'color_jpeg_car']:
        save_dir = f'results/swinir_{args.task}_jpeg{args.jpeg}'
        folder = args.folder_gt
        border = 0
        window_size = 7

    return folder, save_dir, border, window_size


def get_image_pair(args, path):
    (imgname, imgext) = os.path.splitext(os.path.basename(path))

    # 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
    if args.task in ['classical_sr', 'lightweight_sr']:
        img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
        img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
            np.float32) / 255.

    # 003 real-world image sr (load lq image only)
    elif args.task in ['real_sr']:
        img_gt = None
        img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.

    # 004 grayscale image denoising (load gt image and generate lq image on-the-fly)
    elif args.task in ['gray_dn']:
        img_gt = cv2.imread(path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.
        np.random.seed(seed=0)
        img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape)
        img_gt = np.expand_dims(img_gt, axis=2)
        img_lq = np.expand_dims(img_lq, axis=2)

    # 005 color image denoising (load gt image and generate lq image on-the-fly)
    elif args.task in ['color_dn']:
        img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
        np.random.seed(seed=0)
        img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape)

    # 006 grayscale JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
    elif args.task in ['jpeg_car']:
        img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED)
        if img_gt.ndim != 2:
            img_gt = util.bgr2ycbcr(img_gt, y_only=True)
        result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
        img_lq = cv2.imdecode(encimg, 0)
        img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
        img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.

    # 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
    elif args.task in ['color_jpeg_car']:
        img_gt = cv2.imread(path)
        result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
        img_lq = cv2.imdecode(encimg, 1)
        img_gt = img_gt.astype(np.float32)/ 255.
        img_lq = img_lq.astype(np.float32)/ 255.

    return imgname, img_lq, img_gt


def test(img_lq, model, args, window_size):
    if args.tile is None:
        # test the image as a whole
        output = model(img_lq)
    else:
        # test the image tile by tile
        b, c, h, w = img_lq.size()
        tile = min(args.tile, h, w)
        assert tile % window_size == 0, "tile size should be a multiple of window_size"
        tile_overlap = args.tile_overlap
        sf = args.scale

        stride = tile - tile_overlap
        h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
        w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
        E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
        W = torch.zeros_like(E)

        for h_idx in h_idx_list:
            for w_idx in w_idx_list:
                in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
                out_patch = model(in_patch)
                out_patch_mask = torch.ones_like(out_patch)

                E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
                W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
        output = E.div_(W)

    return output

if __name__ == '__main__':
    main()

效果展示:

低质量图:

高质量图:

 

效果还是可以的,适用于超分辨率重建。

以上为全部内容!

 

 

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值