用Origin绘图软件绘制图表-用theme

用Origin绘图软件制作普通图的流程:

1)打开Origin软件,在工具栏上点击New Execl,这样会在软件窗口打开excel 表格;

2)将需要绘制图表的数据拷贝到该excel表格中,并选中数据;

3)点击软件下方"绘制折线"模式,这样会以默认的样式绘制出来图表;

4)右键单击如坐标轴,Legend等,修改相应的属性,以达到自己的目标为止;

5)将绘制好的图表导出保存到指定文件夹,file > Export graph.


将图表设置好属性,右键单击>保存格式为主题,选择全部保存,自定义命名。

再次创建图表时,同上步骤,但是设置样式时,可以直接按F7, 打开Theme Organizer对话框,选中自定义命名的theme,点击Apply就可以了。



### 科研绘图中的折线图绘制方法 对于科研绘图而言,`Matplotlib` 和 `Seaborn` 是两个非常流行的 Python 库,它们都适合用来绘制高质量的折线图。 #### 使用 Matplotlib 绘制折线图 Matplotlib 提供了丰富的接口来定制化图表的各种细节。下面是一个简单的例子展示了如何使用 Matplotlib 来创建一个基础版本的折线图: ```python import matplotlib.pyplot as plt # 数据准备 x_values = [0, 1, 2, 3, 4] y_values = [0, 2, 1, 3.5, 1] plt.figure(figsize=(8, 6)) plt.plot(x_values, y_values, marker='o', linestyle='-', color='blue') plt.title('Simple Line Plot Example with Matplotlib') plt.xlabel('X Axis Label') plt.ylabel('Y Axis Label') plt.grid(True) # 显示图像 plt.show() ``` 这段代码会生成一张带有标题、坐标轴标签以及网格线的基础折线图[^1]。 #### 利用 Seaborn 进一步美化折线图 虽然 Matplotlib 功能强大,但是配置较为繁琐;相比之下,Seaborn 基于 Matplotlib 构建,在保持灵活性的同时简化了许多常见的绘图操作,并且内置了一些美观的主题风格。这里给出一段基于 Seaborn 的折线图绘制实例: ```python import seaborn as sns import pandas as pd sns.set_theme(style="darkgrid") data = {'time': ['Mon', 'Tue', 'Wed', 'Thu', 'Fri'], 'value': [7, 9, 5, 8, 6]} df = pd.DataFrame(data=data) fig, ax = plt.subplots(figsize=(8, 6)) sns.lineplot(x='time', y='value', data=df, markers=True, dashes=False) ax.set_title('Enhanced Line Chart Using Seaborn') plt.tight_layout() # 自动调整布局以防止重叠 plt.show() ``` 此段脚本不仅实现了数据可视化,还应用了更精致的设计元素,使得最终得到的图表更加吸引眼球[^3]。 #### Pandas DataFrame 中 plot 方法的应用 当处理结构化的表格型数据集时,Pandas 的 `DataFrame` 类提供了一个便捷的方法——`.plot()` ,可以直接调用并快速生成所需的图形,默认即为折线图形式。这特别适用于那些希望减少编码量但仍需获得良好视觉效果的研究者们。 ```python import numpy as np import pandas as pd dates = pd.date_range(start='2023-01-01', periods=6) values = np.random.rand(6) df = pd.DataFrame({'Date': dates, 'Value': values}) line_plot = df.plot(kind='line', x='Date', y='Value', title='Line Plot from DataFrame', xlabel='Dates', ylabel='Random Values') plt.show() ``` 上述代码片段说明了怎样借助 Pandas 的力量迅速构建起一条反映随机数值变化的时间序列曲线。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值