🐕 你是一个专业的小偷🤠,计划偷窃沿街的房屋。
每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统
如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组
计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 400
🐖 思路一:动态规划
整一个二维数组
- dp[i][0] 表示第i家没偷的最大总金额 那么 i-1 家可偷可不偷
- dp[i][1] 表示第i家偷了的最大总金额 那么 i-1 家就一定不能偷
最后返回 二维数组结尾 偷与不偷的最大值即可
上代码
public static int rob(int[] nums) {
if(nums == null)
return 0;
if(nums.length == 1)
return nums[0];
int[][] dp = new int[nums.length][2];
// dp[i][0] 表示第i家没偷的最大总金额
// dp[i][1] 表示第i家偷了的最大总金额
dp[0][0] = 0;
dp[0][1] = nums[0];
for(int i = 1 ; i < nums.length;i++) {
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]);
dp[i][1] = dp[i-1][0] + nums[i];
}
return Math.max(dp[nums.length-1][0], dp[nums.length-1][1]);
}
🐖 思路二:动态规划 优化版本
整三个变量 一个偷、一个不偷 还有一个临时变量保存偷的最大值
最后返回 二维数组结尾 偷与不偷的最大值即可
上代码
public static int rob_Plus(int[] nums) {
if(nums == null)
return 0;
if(nums.length == 1)
return nums[0];
int No = 0;
int Yes = nums[0];
int temp = 0;
for(int i = 1 ; i < nums.length ; i++) {
temp = No;
No = Math.max(No, Yes);
Yes = temp + nums[i];
}
return Math.max(No, Yes);
}