7、无约束优化及相关算法详解

无约束优化及相关算法详解

1. 无约束优化方法概述

无约束优化存在多种方法,可根据是否使用导数信息大致分类:
- 仅使用函数评估的搜索方法 :如 Nelder 和 Mead 的单纯形搜索,适用于高度非线性或有许多不连续点的问题。
- 梯度方法 :当要最小化的函数一阶导数连续时,通常更高效。
- 高阶方法 :如牛顿法,仅在二阶信息易于计算时适用,因为使用数值微分计算二阶信息计算量很大。

梯度方法利用函数的斜率信息来确定搜索方向,认为最小值位于该方向。其中最基本的是最速下降法,搜索方向为 $-\nabla f(x)$,这里 $\nabla f(x)$ 是目标函数的梯度。但对于具有狭长山谷的函数,如 Rosenbrock 函数:
[f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2]
该函数的最小值在 $x = [1, 1]$ 处,此时 $f(x) = 0$。最速下降法在优化此函数时效率极低,从点 $[-1.9, 2]$ 开始进行最速下降法优化,迭代 1000 次后仍离最小值有相当大的距离,算法在山谷两侧不断曲折前进。

2. 拟牛顿法

在使用梯度信息的方法中,拟牛顿法最受青睐。这些方法在每次迭代中积累曲率信息,以构建如下形式的二次模型问题:
[ \min_x \frac{1}{2}x^T H x + c^T x + b ]
其中,Hessian 矩阵 $H$ 是正定对称矩阵,$c$ 是常数向量,$b$ 是常数。当 $x$ 的偏导数为零时,该问题取得最优解

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值