视觉分类与目标检测
文章平均质量分 71
介绍经典、SOTA视觉分类与目标检测方法
CS_Zero
https://github.com/ZhangPeike
展开
-
【深度学习】TensorFlow基础介绍
Int64存储bool、Enum、uint32、int32、int64、uint64,Bytes存储字符串、二进制,Float存储float(float32)和double(float64)。tensorflow定义的数据格式,一种二进制文件格式,用于保存和读取图像和文本数据。tfrecord文件包含了tf.train.Example protobuf数据。不同点:变量可被TensorFlow的自动求导机制求导,常被用于机器学习模型的参数。采用tfrecord的数据协议,Dataset结构需参考。原创 2024-03-05 17:40:09 · 639 阅读 · 0 评论 -
Focal Loss介绍
样本少的类别较难分类,Focal loss有助于提高样本少类别的准确率;但难分样本不局限于样本数少的类别。Focal loss从分类难易程度加权loss,使得loss聚焦于难分样本。正负样本个数不均,导致训练反馈偏重于样本多的类别。采用加权,平衡交叉熵。原创 2024-03-04 17:39:46 · 707 阅读 · 0 评论