【视觉三维重建】【论文笔记】高清3D高斯泼溅(Deblurring 3D Gaussian Splatting)

本文介绍了针对3D高斯泼溅渲染的去模糊技术,通过MLP对3D高斯协方差建模,实现实时高质量的图像重建。在训练中引入模糊,推理时去除,模拟类似于假性近视矫正的过程。实验结果显示该方法在保持高细节还原度的同时,提高了图像清晰度,达到了接近SOTA的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

去模糊的3D高斯泼溅,比3D高斯更加精细,对场景物体细节的还原度更高,[官网](https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/)

背景技术

Volumetric rendering-based nerual fields:NeRF.
Rasterization rendering: 3D-GS.
Rasterization比volumetric方法更加高效。

摘要

一种新的field-based的网络模型,实现对最新的rasterization rendering技术——3D高斯泼溅的去模糊。
设计MLP,对各个3D高斯的协方差建模;既能重建出优异、锐利的细节,又能保证实时渲染。

方法

一个MLP处理3D高斯模型,其输入包含视线方向向量 v v v,模型的位置 x x x、姿态 r r r、尺度系数 s s s,输出偏置量 δ r \delta r δr δ s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值