机器学习暑假任务(一)
关键名词解释
训练集:训练数据模型的数据集。
测试集:评估模型性能P的数据集
验证集:模型训练过程中留出的样本集,它可以用于调整模型的超参数和评估模型的能力。
经验误差:模型在训练集上表现出的误差
泛化误差:新输入数据的误差期望。通常通过在测试集上的性能来评估泛化误差
欠拟合:模型不能再训练集上获得足够低的误差;
过拟合(overfitting):训练误差和测试误差的差距太大
学习率:梯度下降法中,用于控制步长的一个参数,过大,模型不收敛,发散或者震荡,过小,梯度下降收敛很慢
线性模型
BP算法(误差逆传播算法)
5.3公式推导
个人理解
BP算法主要分为开始的正向传播(参数随机初始化)和误差反向传播(核心就是根据误差进行更新权值和阈值)
正向传播: 是指输入样本从输入层进入网络,经隐层逐层传递至输出层,得到输出层的实际输出与期望输出的误差。
误差反向传播: 是指将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。
不断重复此过程,权值不断调整的过程,也即网络的学习训练过程。直到达到终止条件(可以是学习次数,也可以是特定时间等等);
最终神经网络学到的东西,也就蕴含在每一个连接权值与阈值中。
神经网络
python编程实现用人工神经网络挑选好瓜
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
seed = 2020
import random
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.close('all')
# 数据预处理
def preprocess(data):
# 将非数映射数字
for title in data.columns:
if data[title].dtype == 'object':
encoder = LabelEncoder()
data[title] = encoder.fit_transform(data[title])
# 去均值和方差归一化
ss = StandardScaler()
X = data.drop('好瓜', axis=1)
Y = data['好瓜']
X = ss.fit_transform(X)
x, y = np.array(X), np.array(Y).reshape(Y.shape[0], 1)
return x, y
# 定义Sigmoid
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# 求导
def d_sigmoid(x):
return x * (1 - x)
# 标准BP算法
def standard_BP(x, y, dim=10, eta=0.8, max_iter=500):
n_samples = 1
# 随机初始化参数 矩阵形式
w1 = np.random.random((x.shape[1], dim))
w2 = np.random.random((dim, 1))
b1 = np.random.random((n_samples, dim))
b2 = np.random.random((n_samples, 1))
# 保存损失
losslist = []
for ite in range(max_iter):
loss_per_ite = []
for m in range(x.shape[0]):
xi, yi = x[m, :], y[m, :]
xi, yi = xi.reshape(1, xi.shape[0]), yi.reshape(1, yi.shape[0])
# 前向传播
u1 = np.dot(xi, w1) + b1
out1 = sigmoid(u1)
u2 = np.dot(out1, w2) + b2
out2 = sigmoid(u2)
loss = np.square(yi - out2) / 2
loss_per_ite.append(loss)
print('standard BP---iter:%d loss:%.4f' % (ite, loss))
# 反向传播
g = (yi - out2) * d_sigmoid(out2) # g 式
d_w2 = np.dot(np.transpose(out1), g) # 即输出层与隐层 权值更新
d_b2 = -g # 即输出层 阈值更新
d_out1 = np.dot(g, np.transpose(w2)) # 对隐层 输出求导
e = d_out1 * d_sigmoid(out1) # e 式
d_w1 = np.dot(np.transpose(xi), e) # 即输入层与隐层 权值更新
d_b1 = -e # 隐层 阈值 更新
# 更新
w1 = w1 + eta * d_w1
w2 = w2 + eta * d_w2
b1 = b1 + eta * d_b1
b2 = b2 + eta * d_b2
losslist.append(np.mean(loss_per_ite))
# Loss可视化
plt.figure()
##补充Loss可视化代码
plt.plot([i + 1 for i in range(max_iter)], losslist)
plt.legend(['standard BP'])
plt.xlabel('iteration')
plt.ylabel('loss')
plt.show()
return w1, w2, b1, b2
def predict(x,w1,w2,b1,b2):
alpha = np.dot(x, w1) #隐层输入
b=sigmoid(alpha-b1)#隐层输出
beta=np.dot(b,w2) #输出层
Y=sigmoid(beta-b2) #输出层结果
return Y