P3268 Silver Cow Party-最短路径,反向建图

源自白书的题,写了一遍发现果然有收获,原题传送门

题意

寒假到了,N头牛都要去参加一场在编号为X(1≤X≤N)的牛的农场举行的派对(1≤N≤1000),农场之间有M(1≤M≤100000)条有向路,每条路长Ti(1≤Ti≤100)。

每头牛参加完派对后都必须回家,无论是去参加派对还是回家,每头牛都会选择最短路径,求这N头牛的最短路径(一个来回)中最长的一条路径长度。

解法

拿到题第一想法是所有点对之间的最短路,Floyd一遍过,嗯写完被卡的死死的orz。果然 n 3 n^3 n3不是啥时候都可以用,介绍一道可以Floyd的傻题。这么一想难道要一个一个点进行最短路嘛,好像也很容易TLE把。这时候一个大胆的想法涌现在心头 看完题解有了点思路,重点在于反向建图进行计算,简单证明,如果1->2可以直接到达,最短路径是直接到达经过的长度4,反向建图计算从2开始到所有点的最短路径的话,2->1必然是4,如果1-2的最短路径经过一个点3,即1-3-2,那么反向建图就存在一个路径2-3-1,最短路径长度依然可以进行计算。就这样把多个点到一个点的最短路径转化成了基础的单元最短路径问题,୧(๑•̀◡•́๑)૭
顺手写个大顶堆优化一下,以防被卡

#include<iostream>
#include<cmath>
#include<string.h>
#include<queue>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;

#define Max 1005
#define ll int
#define inf 10000000
#define p pair<ll,ll>

struct node {
	ll to, weight;
	node(ll a = 0, ll b = 0) { to = a; weight = b; }
};

vector<node> G[Max], GT[Max];//正向图,反向图

//dis1:各个点到s的最短路径----反向建图计算
//dis2:s到各个点的最短路径
ll n, m, dis1[Max], dis2[Max], x, ans = 0;

void Dijkstra() {
	dis1[x] = 0; dis2[x] = 0;//初始化
	priority_queue<p, vector<p>, greater<p> > q1, q2;//first:weight second:id, 小顶堆
	q1.push(p(0, x)); q2.push(p(0, x));
	while (!q1.empty()) {
		p tmp = q1.top(); q1.pop(); ll id = tmp.second, d = tmp.first;
		if (dis1[id] < d) continue; //过时数据
		for (unsigned i = 0; i < G[id].size(); i++) {
			if (d + G[id][i].weight < dis1[G[id][i].to]) {
				dis1[G[id][i].to] = d + G[id][i].weight;
				q1.push(p(dis1[G[id][i].to], G[id][i].to));
			}
		}
	}
	while (!q2.empty()) {
		ll d = q2.top().first, id = q2.top().second; q2.pop();
		if (d > dis2[id]) continue;
		for (unsigned i = 0; i < GT[id].size(); i++) {
			node xx = GT[id][i];
			if (dis2[xx.to] > xx.weight + d) {
				dis2[xx.to] = xx.weight + d; q2.push(p(dis2[xx.to], xx.to));
			}
		}
	}
}

int main() {
	cin >> n >> m >> x;//牛头数,路径数,目的地
	for (ll i = 1; i <= n; i++) { dis1[i] = dis2[i] = inf; }
	for (ll i = 1; i <= m; i++) {
		ll a, b, c; cin >> a >> b >> c;
		G[a].push_back(node(b, c));//正常方向
		GT[b].push_back(node(a, c));//反向建图
	}
	Dijkstra();//分别求出所有点到x,x回到所有点的距离
	for (ll i = 1; i <= n; i++) {
		ans = max(ans, dis1[i] + dis2[i]);
	}
	cout << ans << endl;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值