概率论与数理统计基础概念与重要定义汇总

一、随机事件和概率

1:互斥,对立,独立事件的定义和性质。

互斥事件 \color{red}\textbf{互斥事件} 互斥事件
事件A和B的交集为空,A与B就是互斥事件,也叫互不相容事件。也可叙述为:不可能同时发生的事件。如A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。

P(A+B)=P(A)+P(B)(这个公式何时成立在我一面thu叉院的时候被问到过,我神tm就答了一个相互独立/(ㄒoㄒ)/~~)且P(A)+P(B)≤1


对立事件 \color{red}\textbf{对立事件} 对立事件

若A交B为不可能事件,A并B为必然事件,那么称A事件与事件B互为对立事件,其含义是:事件A和事件B必有一个且仅有一个发生

对立事件概率之间的关系:P(A)+P(B)=1。例如,在掷骰子试验中,A={出现的点数为偶数},b={出现的点数为奇数},A∩B为不可能事件,A∪B为必然事件,所以A与B互为对立事件。

互斥事件与对立事件两者的联系在于:对立事件属于一种特殊的互斥事件

它们的区别可以通过定义看出来:一个事件本身与其对立事件的并集等于总的样本空间;而若两个事件互为互斥事件,表明一者发生则另一者必然不发生,但不强调它们的并集是整个样本空间。即对立必然互斥,互斥不一定会对立。


独立事件 \color{red}\textbf{独立事件} 独立事件

设A,B是试验E的两个事件,若 P ( A ) > 0 P(A)>0 P(A)>0,可以定义 P ( B ∣ A ) P(B∣A) P(BA).一般A的发生对B发生的概率是有影响的,所以条件概率 P ( B ∣ A ) ≠ P ( B ) P(B∣A)≠P(B) P(BA)=P(B),而只有当A的发生对B发生的概率没有影响的时候(即A与B相互独立)才有条件概率 P ( B ∣ A ) = P ( B ) P(B∣A)=P(B) P(BA)=P(B).这时,由乘法定理 P ( A ∩ B ) = P ( B ∣ A ) P ( A ) = P ( A ) P ( B ) . P(A∩B)=P(B∣A)P(A)=P(A)P(B). P(AB)=P(BA)P(A)=P(A)P(B).

定义:设A,B是两事件,如果满足等式 P ( A ∩ B ) = P ( A B ) = P ( A ) P ( B ) P(A∩B)=P(AB)=P(A)P(B) P(AB)=P(AB)=P(A)P(B),则称事件A,B相互独立,简称A,B独立.

容易推广:设A,B,C是三个事件,如果满足 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B), P ( B C ) = P ( B ) P ( C ) P(BC)=P(B)P(C) P(BC)=P(B)P(C), P ( A C ) = P ( A ) P ( C ) P(AC)=P(A)P(C) P(AC)=P(A)P(C), P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立

更一般的定义是, A 1 , A 2 , … … , A n A1,A2,……,An A1,A2,,An n ( n ≥ 2 ) n(n≥2) n(n2)个事件,如果对于其中任意2个,任意3个,…任意n个事件的积事件的概率,都等于各个事件概率之积,则称事件 A 1 , A 2 , … , A n A1,A2,…,An A1,A2,,An相互独立

2:概率,条件概率和五大概率公式

概率公理与条件概率 \color{red}\textbf{概率公理与条件概率} 概率公理与条件概率

什么是概率?设实验E的样本空间为 Ω \Omega Ω,则称实值函数 P P P为概率,如果 P P P满足下列三个条件

  1. 对于任意事件A,满足 P ( A ) ≥ 0 P(A)\geq0 P(A0
  2. 对于必然事件 Ω \Omega Ω P ( A ) = 1 P(A)=1 P(A)=1
  3. 对于两两互斥的可数无穷个事件 A 1 , A 2 , . . . , A N . . . A_1,A_2,...,A_N... A1,A2,...,AN...,有
    P ( A 1 ∪ A 2 ∪ . . . ∪ A N ∪ . . . ) = P ( A 1 ) + P ( A 2 ) + . . . + P ( A N ) + . . . P(A_1\cup A_2\cup...\cup A_N\cup...)=P(A_1)+P(A_2)+...+P(A_N)+... P(A1A2...AN...)=P(A1)+P(A2)+...+P(AN)+...

什么是条件概率?设 A , B A,B A,B为两个事件,且 P ( A ) > 0 P(A)>0 P(A)>0,称
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
为在事件A发生的条件下事件B发生的条件概率。

五大概率公式 \color{red}\textbf{五大概率公式} 五大概率公式

  • 加法公式: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB),P(A∪B∪C)=P(A)+P(B)+P©-P(AB)-P(BC)-P(AC)+P(ABC).
  • 减法公式: P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(AB)=P(A)P(AB)
  • 乘法公式:当 P ( A ) > 0 P(A)>0 P(A)>0时, P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)=P(A)P(B|A) P(AB)=P(A)P(BA)
  • 全概率公式:设 B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B1,B2,...,Bn为样本区间内概率均不为零的一个完备事件组,则对任意事件 A A A,有 P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^n P(B_i)P(A|B_i) P(A)=i=1nP(Bi)P(ABi)
  • 贝叶斯公式:设 B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值