二维树状数组详解--矩阵所有元素同时加减,单点查询

当要频繁的对数组元素进行修改,同时又要频繁的查询数组内任一区间元素之和的时候,可以考虑使用树状数组.

通常对一维数组最直接的算法可以在O(1)时间内完成一次修改,但是需要O(n)时间来进行一次查询.而树状数组的修改和查询均可在O(log(n))的时间内完成.

树状数组只能完成单点修改和区间查询。如果我们有以下问题呢?

问题:一个由数字构成的大矩阵,能进行两种操作

  1. 对矩阵里的某个数加上一个整数(可正可负)
  2. 查询某个子矩阵里所有数字的和,要求对每次查询,输出结果。

一维树状数组很容易扩展到二维,在二维情况下:数组A[][]的树状数组定义为:

C[x][y] = ∑ a[i][j], 其中,
x-lowbit(x) + 1 <= i <= x,
y-lowbit(y) + 1 <= j <= y.

至于lowbit(x)是什么就不多说了 x&-x,一维树状数组的操作核心。

例:举个例子来看看C[][]的组成。
设原始二维数组为:

A[][]={
    {a11,a12,a13,a14,a15,a16,a17,a18,a19}, 
    {a21,a22,a23,a24,a25,a26,a27,a28,a29}, 
    {a31,a32,a33,a34,a35,a36,a37,a38,a39}};

那么它对应的二维树状数组C[][]呢?

记:

  B[2]={a21,a21+a22,a23,a21+a22+a23+a24,a25,a25+a26,...} 这是第二行的一维树状数组 
  B[3]={a31,a31+a32,a33,a31+a32+a33+a34,a35,a35+a36,...} 这是第三行的一维树状数组 
  B[4]={a41,a41+a42,a43,a41+a42+a43+a44,a45,a45+a46,...} 这是第四行的一维树状数组 

那么

C[1][1]=a11,C[1][2]=a11+a12,C[1][3]=a13,C[1][4]=a11+a12+a13+a14,c[1][5]=a15,C[1][6]=a15+a16,... 
   这是A[][]第一行的一维树状数组 

C[2][1]=a11+a21,C[2][2]=a11+a12+a21+a22,C[2][3]=a13+a23,C[2][4]=a11+a12+a13+a14+a21+a22+a23+a24, 
C[2][5]=a15+a25,C[2][6]=a15+a16+a25+a26,... 
   这是A[][]数组第一行与第二行相加后的树状数组 

C[3][1]=a31,C[3][2]=a31+a32,C[3][3]=a33,C[3][4]=a31+a32+a33+a34,C[3][5]=a35,C[3][6]=a35+a36,... 
   这是A[][]第三行的一维树状数组 

C[4][1]=a11+a21+a31+a41,C[4][2]=a11+a12+a21+a22+a31+a32+a41+a42,C[4][3]=a13+a23+a33+a43,... 
    这是A[][]数组第一行+第二行+第三行+第四行后的树状数组 

搞清楚了二维树状数组C[][]的规律了吗? 仔细研究一下,会发现:

(1)在二维情况下,如果修改了A[i][j]=delta,则对应的二维树状数组更新函数为:

 private void Modify(int i, int j, int delta){

         A[i][j]+=delta;

       for(int x = i; x< A.length; x += lowbit(x))
        for(int y = j; y <A[i].length; y += lowbit(y)){
          C[x][y] += delta;

        }
     }

(2)在二维情况下,求子矩阵元素之和∑ a[i]j的函数为

    int Sum(int i, int j){
      int result = 0;
      for(int x = i; x > 0; x -= lowbit(x)) {
        for(int y = j; y > 0; y -= lowbit(y)) {
            result += C[x][y];
        }
      }
    return result;
   }

比如:
    Sun(1,1)=C[1][1];  Sun(1,2)=C[1][2]; Sun(1,3)=C[1][3]+C[1][2];...
    Sun(2,1)=C[2][1];  Sun(2,2)=C[2][2]; Sun(2,3)=C[2][3]+C[2][2];...
    Sun(3,1)=C[3][1]+C[2][1]; Sun(3,2)=C[3][2]+C[2][2]
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值