九宫格数独:搜索与剪枝

题目大意

这两道题的方法基本一样

把一个9行9列的网格,再细分为9个3*3的子网格,要求每行、每列、每个子网格内都只能使用一次1~9中的一个数字,即每行、每列、每个子网格内都不允许出现相同的数字。

0是待填位置,其他均为已填入的数字。

要求填完九宫格并输出(如果有多种结果,则只需输出其中一种)

如果给定的九宫格无法按要求填出来,则输出原来所输入的未填的九宫格
在这里插入图片描述

思路分析

格子里面放符号/数字的问题一般都可以search(参考八数码),不过对于数独问题,始末状态不确定,不能双向bfs,A*的评估函数也比较难以确定,一般使用基本的bfs+剪枝,只要剪枝剪得好,一般都可以过。

那么我们首先要确定bfs什么时候结束,我们对每一个位置x,y进行搜索,那么只要x=10就可以结束。然后我们要指定搜索的策略,对每一个位置,需要找到该行,该列,该33方格都不曾出现过的数字,行和列比较好处理,但是33方格出现的数字应该如何存储。

即要知道第i行j列的数字是属于哪个子网格的

首先我们假设子网格的序号如下编排:

在这里插入图片描述
由于1<=i、j<=9,我们有: (其中“/”是C++中对整数的除法)

在这里插入图片描述
令a= i/3 , b= j/3 ,根据九宫格的 行列 与 子网格 的 关系,我们有:

在这里插入图片描述
不难发现 3 a + b = k 3a+b=k 3a+b=k

3 ∗ ( i / 3 ) + j / 3 = k 3*(i/3)+j/3=k 3(i/3)+j/3=k

九宫格问题再难的话,可能就是这道题了,此时如果我们继续dfs就会TLE,因此我们需要更强的算法,

一个比较显然的事实是,在你玩数独的时候一般思路肯定是先把能确定的填上,比如样例一,第8行第8列,那个位置可能填的数特别少。

基于这种思路,我们先从容易确定的地方dfs,下一步走到下一个最容易确定的点,这样解答树能少枚举很多。

怎样判断一个点的确定度呢?当然是看看它的行填上了几个、列填上了几个、宫填上了几个了。

#include<iostream>
#include<string.h>
#include<string>
#include<algorithm>
#include<vector>
using namespace std;

#define MAX 15
#define ll int
#define inf 1e9

ll row[MAX][MAX], col[MAX][MAX], grid[MAX][MAX], a[MAX][MAX];

bool dfs(ll x, ll y) {
	if (x == 9)
		return true; //搜索完了0-8都可以了

	if (a[x][y]) {//该位置已经填了一个数字了
		if (y == 8)
			return dfs(x + 1, 0);
		else return dfs(x, y + 1);
	}
	else {
		ll k = 3 * (x / 3) + y / 3, flag = 0;
		for (int i = 1; i < 10; i++) {
			if (row[x][i] || col[y][i] || grid[k][i])continue; //这个数字用不得

			a[x][y] = i;
			row[x][i] = 1; col[y][i] = 1; grid[k][i] = 1;
			if (y == 8)
				flag = dfs(x + 1, 0);
			else flag = dfs(x, y + 1);

			if (flag) return true;
			else { //回溯,进行下一次尝试
				a[x][y] = 0;
				row[x][i] = col[y][i] = grid[k][i] = 0;
			}
		}
	}
	return false; //这里别忘了,所有数字都填不成
}

int main() {
	ll N, g; cin >> N; char s;
	for (int i = 0; i < N; i++) {
		memset(row, 0, sizeof(row));
		memset(col, 0, sizeof(col));
		memset(grid, 0, sizeof(grid));
		for (int j = 0; j < 9; j++)
			for (int k = 0; k < 9; k++) {
				cin >> s;
				a[j][k] = s - '0';
				g = 3 * (j / 3) + (k / 3);
				row[j][a[j][k]] = 1; col[k][a[j][k]] = 1; grid[g][a[j][k]] = 1;
			}
		dfs(0, 0);

		for (int j = 0; j < 9; j++) {
			for (int k = 0; k < 9; k++) {
				cout << a[j][k];
			}
			cout << endl;
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值