题目大意
这两道题的方法基本一样
把一个9行9列的网格,再细分为9个3*3的子网格,要求每行、每列、每个子网格内都只能使用一次1~9中的一个数字,即每行、每列、每个子网格内都不允许出现相同的数字。
0是待填位置,其他均为已填入的数字。
要求填完九宫格并输出(如果有多种结果,则只需输出其中一种)
如果给定的九宫格无法按要求填出来,则输出原来所输入的未填的九宫格
思路分析
格子里面放符号/数字的问题一般都可以search(参考八数码),不过对于数独问题,始末状态不确定,不能双向bfs,A*的评估函数也比较难以确定,一般使用基本的bfs+剪枝,只要剪枝剪得好,一般都可以过。
那么我们首先要确定bfs什么时候结束,我们对每一个位置x,y
进行搜索,那么只要x=10
就可以结束。然后我们要指定搜索的策略,对每一个位置,需要找到该行,该列,该33方格都不曾出现过的数字,行和列比较好处理,但是33方格出现的数字应该如何存储。
即要知道第i行j列的数字是属于哪个子网格的
首先我们假设子网格的序号如下编排:
由于1<=i、j<=9,我们有: (其中“/”是C++中对整数的除法)
令a= i/3 , b= j/3 ,根据九宫格的 行列 与 子网格 的 关系,我们有:
不难发现
3
a
+
b
=
k
3a+b=k
3a+b=k
即 3 ∗ ( i / 3 ) + j / 3 = k 3*(i/3)+j/3=k 3∗(i/3)+j/3=k
九宫格问题再难的话,可能就是这道题了,此时如果我们继续dfs就会TLE,因此我们需要更强的算法,
一个比较显然的事实是,在你玩数独的时候一般思路肯定是先把能确定的填上,比如样例一,第8行第8列,那个位置可能填的数特别少。
基于这种思路,我们先从容易确定的地方dfs,下一步走到下一个最容易确定的点,这样解答树能少枚举很多。
怎样判断一个点的确定度呢?当然是看看它的行填上了几个、列填上了几个、宫填上了几个了。
#include<iostream>
#include<string.h>
#include<string>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 15
#define ll int
#define inf 1e9
ll row[MAX][MAX], col[MAX][MAX], grid[MAX][MAX], a[MAX][MAX];
bool dfs(ll x, ll y) {
if (x == 9)
return true; //搜索完了0-8都可以了
if (a[x][y]) {//该位置已经填了一个数字了
if (y == 8)
return dfs(x + 1, 0);
else return dfs(x, y + 1);
}
else {
ll k = 3 * (x / 3) + y / 3, flag = 0;
for (int i = 1; i < 10; i++) {
if (row[x][i] || col[y][i] || grid[k][i])continue; //这个数字用不得
a[x][y] = i;
row[x][i] = 1; col[y][i] = 1; grid[k][i] = 1;
if (y == 8)
flag = dfs(x + 1, 0);
else flag = dfs(x, y + 1);
if (flag) return true;
else { //回溯,进行下一次尝试
a[x][y] = 0;
row[x][i] = col[y][i] = grid[k][i] = 0;
}
}
}
return false; //这里别忘了,所有数字都填不成
}
int main() {
ll N, g; cin >> N; char s;
for (int i = 0; i < N; i++) {
memset(row, 0, sizeof(row));
memset(col, 0, sizeof(col));
memset(grid, 0, sizeof(grid));
for (int j = 0; j < 9; j++)
for (int k = 0; k < 9; k++) {
cin >> s;
a[j][k] = s - '0';
g = 3 * (j / 3) + (k / 3);
row[j][a[j][k]] = 1; col[k][a[j][k]] = 1; grid[g][a[j][k]] = 1;
}
dfs(0, 0);
for (int j = 0; j < 9; j++) {
for (int k = 0; k < 9; k++) {
cout << a[j][k];
}
cout << endl;
}
}
}