凸优化理论(一)深入理解仿射集,凸集,锥等定义及相关证明

本文深入探讨了几何集合中的核心概念,包括仿射集、凸集、凸锥及其组合、包的概念。通过对比直线、线段和射线,解析了各种集合的定义与性质,如仿射组合、凸组合及凸锥组合,并展示了这些概念在数学优化中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重点是理解组合的概念,对于集合包括仿射集,凸集,凸锥集的定义都类似,也就是相应 k k k个点的的组合仍然在这个集合里。而对于包的定义也类似,就是从一个不是仿射集/凸集/凸锥集的集合构造出一个这样的集合。

1:仿射集相关定义与证明

直线 \color{red}\textbf{直线} 直线
给定空间的两个点 x 1 , x 2 ∈ R n x_1,x_2\in R^n x1,x2Rn,,我们可以确定一条过这两个点的直线
y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) y=\theta x_1+(1-\theta)x_2=x_2+\theta(x1-x2) y=θx1+(1θ)x2=x2+θ(x1x2)

也就是我们从 x 2 x_2 x2出发,沿着 x 1 − x 2 x_1-x_2 x1x2的方向任意的变化 θ \theta θ值,这样就可以画出来整个一条直线。

线段 \color{red}\textbf{线段} 线段
对于线段而言, 我们需要加上约束 θ ∈ [ 0 , 1 ] \theta\in[0,1] θ[0,1]


仿射集 \color{red}\textbf{仿射集} 仿射集
一个集合 c c c是仿射集,那么在集合中选择任意两点 x 1 , x 2 ∈ c x_1,x_2\in c x1,x2c,那么连接 x 1 , x 2 x_1,x_2 x1,x2的直线也在集合内。
显然一个直线是一个仿射集,一个线段不是仿射集,整个的二维空间是一个仿射集,但是在二维空间内选择一有限的区域不是一个仿射集。

仿射集的定义依赖于任意两点这个概念,那么如果我们将两个点扩充到三个点,四个点,无穷个点,然后对概念进行扩充,
仿射组合 \color{red}\textbf{仿射组合} 仿射组合

x 1 , x 2 , . . . , x k ∈ c , θ 1 , θ 2 , . . . , θ k , ∑ i = 1 k θ i = 1 \color{blue}x_1,x_2,...,x_k\in c,\theta_1,\theta_2,...,\theta_k,\sum_{i=1}^k\theta_i=1 x1,x2,...,xkc,θ1,θ2,...,θk,i=1kθi=1,那么我们有一个仿射组合:
θ 1 x 1 + θ 2 x 2 + . . . + θ k x k \theta_1x_1+\theta_2x_2+...+\theta_kx_k θ1x1+θ2x2+...+θkxk
那么我们将定义扩展,如果一个集合是仿射集,那么我们从中选取任意 k k k个点,他们的仿射组合总是在集合 c c c。(考虑 k = 2 k=2 k=2那么该定义就退化为了直线的定义)。


仿射组合的简单证明 \color{red}\textbf{仿射组合的简单证明} 仿射组合的简单证明
我们将两个点的情况拓广至三个点的情况,来证明仿射集在放射组合上的拓展是有效的

假设我们有三个点 x 1 , x 2 , x 3 ∈ c , θ 1 + θ 2 + θ 3 = 1 x_1,x_2,x_3\in c,\theta_1+\theta_2+\theta_3=1 x1,x2,x3c,θ1+θ2+θ3=1,那么对于任意两个点(姑且选择前两个点,我们有)
θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ∈ c \frac{\theta_1}{\theta_1+\theta_2}x_1+\frac{\theta_2}{\theta_1+\theta_2}x_2\in c θ1+θ2θ1x1+θ1+θ2θ2x2c
此时此两个点的线性组合可以看作一个点,然后我们将第三个点加入,可以得到:
( θ 1 + θ 2 ) ( θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ) + ( 1 − θ 1 − θ 2 ) x 3 ∈ c (\theta_1+\theta_2)(\frac{\theta_1}{\theta_1+\theta_2}x_1+\frac{\theta_2}{\theta_1+\theta_2}x_2)+(1-\theta_1-\theta_2)x_3 \in c (θ1+θ2)(θ1+θ2θ1x1+θ1+θ2θ2x2)+(1θ1θ2)x3c
得证。


2:相关子空间与性质证明

对于上面的定义,我们很容易产生一个问题, 如 果 有 两 个 点 x 1 , x 2 ∈ c , c 是 仿 射 集 , 如 果 我 们 选 择 两 个 不 相 关 的 数 α , β ∈ R , 那 么 α x 1 + β x 2 是 否

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值