题目链接
一道很有意思的搜索题,包含了背包、剪枝优化多种工具。写完还是收获蛮大的
确定解题方法
首先数据范围很小,搜索是可以用的,那么如果我们有 K K K种邮票,我们要确定每种邮票取多少时满足题目中需要的条件,因此对每种邮票的取值进行遍历,如果我们确定了 K K K种邮票的取值,那么我们将其视为一个背包问题,很容易求出他能凑出的所有价格,然后找到连续的价格。
难点:确定每种邮票的取值范围
我们用 p [ i ] p[i] p[i]表示第 i i i种邮票的取值
比较简单的思想我也没想出来 :
- 第一个邮票一定是1,否则1都无法进行拼凑。
- 然后对于第二个邮票,他的起始范围是第一个邮票+1:如果是1则无任何用处,因为邮票的数目是不限制的。那么他的上界是多少呢,1取 N N N个最多能取到 N N N,也就是说我们第二个邮票不能超过 N + 1 N+1 N+1否则一定不能连续。
- 。。。
- 对于第 i i i个邮票,他的下界是 p [ i − 1 ] p[i-1] p[i−1],上街不能超过 p [ i − 1 ] ∗ N + 1 p[i-1]*N+1 p[i−1]∗N+1
那么代码基本上是下面这样的,会TLE,dp求组合数已经很难进行优化了,那么我们还可以思考一下如何为每种邮票确定一个更好的上界
#define inf 0x3f3f3f3f
#define ll long long
#define vec vector<int>
//#define P pair<int,int>
#define MAX 15
int N, K, p[MAX], dp[10005], res, r[MAX];
//calculate the maximal continuous price
int dpp() {
fill(dp, dp + 10005, inf);
int maxj = 0; dp[0] = 0;
for (int i = 1; i <= K; i++) {//traverse all kinds of stamps
for (int j = maxj; j >= 0; j--) {//traverse from the maximal existed price
if (dp[j] == inf)continue;
for (int k = 1; k <= N && dp[j] + k <= N; k++) {
if (dp[j] + 1 < dp[j + k * p[i]])
dp[j + k * p[i]] = dp[j] + k;
}
}
maxj = p[i] * N;
}
int cnt;
for (int i = 1; i <= maxj + 1; i++)
if (dp[i] == inf) {
cnt = i - 1; break;
}
return cnt;
}
//the value of the k-th stamp
void dfs(int k) {
if (k == K + 1) {
int ma = dpp();
if (ma > res) {
res = ma;
for (int i = 1; i <= K; i++)
r[i] = p[i];
}
return;
}
for (int i = p[k - 1] + 1; i <= p[k - 1] * N + 1; i++) {
p[k] = i; dfs(k + 1);
}
}
int main() {
cin >> N >> K;//k kinds of stamps and push on N stamps at most
p[0] = 0;
dfs(1);
for (int i = 1; i <= K; i++)
printf("%d ", r[i]);
printf("\n");
printf("MAX=%d\n", res);
}
优化版上界确定:
假设当前准备填第k个(已经填好了k-1)个
所以在前k-1个中可以凑出1-t中的所有整数(需要用dp求出t)
因此我们可以把上界定为t+1
如果超过了t+1,那么就无法组成t+1了。
所以dfs搜索的范围是
for(int i=dp[i-1];i<=t+1;i++)
那么我们现在唯一要解决的问题,变成了对每个 k k k,确定前 k k k个邮票能够得到的最长连续序列的值,这个其实和上面的组合数用到的dp算法类似。详情见代码
#define inf 0x3f3f3f3f
#define ll long long
#define vec vector<int>
//#define P pair<int,int>
#define MAX 15
int N, K, p[MAX], dp[10005], res, r[MAX];
//calculate the maximal continuous price
int dpp(int K) {
fill(dp, dp + 10005, inf);
int cnt = 0; dp[0] = 0;
while (dp[cnt] != inf) {
cnt++;
for (int i = 1; i <= K; i++) {
if (cnt - p[i] >= 0 && dp[cnt - p[i]] + 1 < dp[cnt] && dp[cnt - p[i]] + 1 <= N)
dp[cnt] = dp[cnt - p[i]] + 1;
}
}
return cnt;
}
//the value of the k-th stamp
void dfs(int k) {
int ma = dpp(k - 1);
if (k == K + 1) {
if (ma > res) {
res = ma;
for (int i = 1; i <= K; i++)
r[i] = p[i];
}
return;
}
for (int i = p[k-1]+1; i <= ma; i++) {
p[k] = i; dfs(k + 1);
}
}
int main() {
cin >> N >> K;//k kinds of stamps and push on N stamps at most
p[0] = 0;
dfs(1);
for (int i = 1; i <= K; i++)
printf("%d ", r[i]);
printf("\n");
printf("MAX=%d\n", res - 1);
}