红黑树详解

红黑树是一种自平衡二叉查找树,保证最坏情况下的查找时间复杂度为O(log2N)。文章详细介绍了红黑树的引入、特性、左旋与右旋操作,以及节点插入和删除的四种情况,包括叶子节点、单子节点、无子节点和双子节点的删除策略,旨在帮助理解红黑树的平衡维护机制。
摘要由CSDN通过智能技术生成

此处提供一个红黑树在线生成网站:Red/Black Tree Visualization

一、简介

红黑树的引入

有了二叉搜索树,为什么还需要平衡二叉树?

  • 二叉树容易退化成一条链
  • 此时查询的时间复杂度也由O(log2N)将退化成O(N)
  • 而平衡二叉树对左右子树高度差有限制,保证最坏的时间复杂度为O(log2N)

有了平衡二叉树,为什么还要红黑树?

  • AVL的左右子树高度差不能超过1,每次进行插入/删除操作时,几乎都需要通过旋转操作保持平衡
  • 在频繁进行插入/删除的场景中,频繁的旋转操作使得AVL的性能大打折扣
  • 红黑树通过牺牲严格的平衡,换取插入/删除时少量的旋转操作,整体性能优于AVL
  • 红黑树插入时的不平衡,不超过两次旋转就可以解决;删除时的不平衡,不超过三次旋转就能解决
  • 红黑树的红黑规则,保证最坏的情况下,也能在O(log2N)时间内完成查找操作。

红黑树简介

红黑树是一种自平衡的二叉查找树,是一种高效的查找树。它是由 Rudolf Bayer 于1978年发明,在当时被称为平衡二叉 B 树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的红黑树。红黑树具有良好的效率,它可在O(logN)时间内完成查找、增加、删除等操作。

红黑树特性

红黑树保证最长路径步长最短路径的两倍,因而近似平衡(最短路径就是全黑色节点,最长路径就是一个红色节点一个黑色节点,当从根节点到叶子节点的路径上黑色节点相同时,最长路径刚好是最短路径的两倍)。红黑树最高高度不超过 2 * log2(n+1)

5大特性:

  1. 节点要么是黑色要么是红色
  2. 根节点是黑色
  3. 叶子节点(外部节点,空节点)都是黑色[最底层的NIL]。
  4. 红色节点节点都是黑色
  5. 从任意节点到叶子节点所有路径都包含相同数目的黑色节点

引申问题

①从根节点到叶子节点的最长路径不大于最短路径的 2 倍

怎么样的路径算最短路径?从规则 5 中,我们知道从根节点到每个叶子节点的黑色节点数量是一样的,那么纯由黑色节点组成的路径就是最短路径。

什么样的路径算是最长路径?根据规则 4 和规则 3,若有红色节点,则必然有一个连接的黑色节点,当红色节点和黑色节点数量相同时,就是最长路径,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值