文章目录
此处提供一个红黑树在线生成网站:Red/Black Tree Visualization
一、简介
红黑树的引入
有了二叉搜索树,为什么还需要平衡二叉树?
- 二叉树容易退化成一条链
- 此时查询的时间复杂度也由O(log2N)将退化成O(N)
- 而平衡二叉树对左右子树高度差有限制,保证最坏的时间复杂度为O(log2N)
有了平衡二叉树,为什么还要红黑树?
- AVL的左右子树高度差不能超过1,每次进行插入/删除操作时,几乎都需要通过旋转操作保持平衡
- 在频繁进行插入/删除的场景中,频繁的旋转操作使得AVL的性能大打折扣
- 红黑树通过牺牲严格的平衡,换取插入/删除时少量的旋转操作,整体性能优于AVL
- 红黑树插入时的不平衡,不超过两次旋转就可以解决;删除时的不平衡,不超过三次旋转就能解决
- 红黑树的红黑规则,保证最坏的情况下,也能在O(log2N)时间内完成查找操作。
红黑树简介
红黑树是一种自平衡的二叉查找树,是一种高效的查找树。它是由 Rudolf Bayer 于1978年发明,在当时被称为平衡二叉 B 树(symmetric binary B-trees)
。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的红黑树
。红黑树具有良好的效率,它可在O(logN)
时间内完成查找、增加、删除等操作。
红黑树特性
红黑树保证最长路径步长最短路径的两倍,因而近似平衡(最短路径就是全黑色节点,最长路径就是一个红色节点一个黑色节点,当从根节点到叶子节点的路径上黑色节点相同时,最长路径刚好是最短路径的两倍)。红黑树最高高度不超过 2 * log2(n+1)
5大特性:
- 节点要么是
黑色
要么是红色
- 根节点是
黑色
- 叶子节点(外部节点,空节点)都是黑色[最底层的NIL]。
红色节点
的子
节点都是黑色
- 从任意节点到
叶子节点
的所有路径
都包含相同数目的黑色节点
引申问题
①从根节点到叶子节点的最长路径不大于最短路径的 2 倍
怎么样的路径算最短路径?从规则 5 中,我们知道从根节点到每个叶子节点的黑色节点数量是一样的,那么纯由黑色节点组成的路径就是最短路径。
什么样的路径算是最长路径?根据规则 4 和规则 3,若有红色节点,则必然有一个连接的黑色节点,当红色节点和黑色节点数量相同时,就是最长路径,