数学知识点
文章平均质量分 75
ctsas
这个作者很懒,什么都没留下…
展开
-
Pairs Forming LCM [数学][最小公倍数为n的数对]
Find the result of the following code:long long pairsFormLCM( int n ) { long long res = 0; for( int i = 1; i <= n; i++ ) for( int j = i; j <= n; j++ ) if( lcm(i, j) == n ) re原创 2017-02-17 16:58:08 · 478 阅读 · 0 评论 -
与程序竞赛有关的数学知识点
本文章涉及初等数论,组合数学,线性代数原创 2017-02-12 12:12:41 · 1500 阅读 · 0 评论 -
矩阵构造方法
Fibonacci数列:F(0)=1 , F(1)=1 , F(n)=F(n-1)+F(n-2)我们以前快速求Fibonacci数列第n项的方法是 构造常系数矩阵(一) Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项快速求法(不考虑高精度)解法:考虑1×2的矩阵【f[n-2],f[n-1]】。根据Fibonacci数列的递推关系,我们可以通过乘以一个2转载 2017-04-04 18:49:41 · 456 阅读 · 0 评论 -
求区间x∈[1,n],y∈[1,m],gcd(x,y)=1的数量 [容斥]
Problem DescriptionThere are many trees forming a m * n grid, the grid starts from (1,1). Farmer Sherlock is standing at (0,0) point. He wonders how many trees he can see.If two trees and Sherlock are原创 2017-02-12 11:40:37 · 1220 阅读 · 0 评论 -
区间[A,B]与N互素的元素个数 [容斥][Eratosthenes筛法]
求区间[A,B]与N互素的元素个数,这是一个经典的容斥问题。原创 2017-02-11 23:30:59 · 546 阅读 · 0 评论 -
容斥原理
集合N, n个属性 容斥原理求具有n个属性之一(并集)的元素的个数 求不具有n个属性中任何一个(交集)的元素的个数 广义容斥原理求恰好具有m个属性的元素的个数转载 2017-02-11 20:29:09 · 286 阅读 · 0 评论 -
欧拉函数
在数论中,对正整数n,欧拉函数φ(n) 是小于或等于n的正整数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为φ函数(由高斯所命名)或是欧拉总计函数(totient function,由西尔维斯特所命名)。下面的内容转自 http://blog.csdn.net/wyg1997/article/details/50510633 求解与n(1~n-1)互质的质因子的个数解析:(转) 定转载 2017-02-11 20:03:48 · 860 阅读 · 0 评论 -
[HDU]3501 Calculation 2 [欧拉函数之求和]
Problem Description Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common原创 2017-02-17 21:54:14 · 439 阅读 · 0 评论 -
ACM 进阶学习第一课----简单数学问题之同余相关
最大公约数算法分析 欧几里德算法 伪代码 while b>0 do r←a%b a←b b←r return a 算法分析: 欧几里德算法是计算最大公约数的传统算法,也是最简单的算法,效率很高 时间复杂度:O(lgn)(最坏情况:斐波那契数列相邻的两项) 空间复杂度:O(1) 但是,对于大整数来说,取模运算非常耗时转载 2017-02-09 16:25:34 · 666 阅读 · 0 评论 -
扩展欧几里得算法 [笔记]
个人笔记不喜勿喷 算法的模拟运行过程原创 2017-02-09 15:17:15 · 545 阅读 · 0 评论 -
Polya定理及应用
概念及定理首先是群的概念:设 GG 是一个集合,∗* 是 GG 上的二元运算,如果 (G,∗)(G,*) 满足下面的条件: 封闭性:对于任何 a,b∈Ga,b \in G 有 a∗b∈Ga*b \in G; 结合律:对任何 a,b,c∈Ga,b,c\in G 有 (a∗b)∗c=a∗(b∗c)(a*b)*c=a*(b*c); 单位元:存在 e∈Ge\in G,使得对所有的 a∈Ga\in G,都有转载 2017-07-26 15:52:48 · 1506 阅读 · 0 评论