- 博客(14)
- 资源 (2)
- 收藏
- 关注
原创 Visual Tracker Benchmark 配置使用指南
读研期间一直在研究目标跟踪,现在将目标跟踪领域最常用的算法评测平台,吴毅等人提出的Visual Tracker Benchmark 的使用指南和一些常见问题的解决方法分享出来,并提供常见错误的解决方法,供目标跟踪研究者参考。 压缩包下载地址在这里VTB.zip,解压后的文件目录如下图所示。 文件目录说明跟踪算法评测就是配置你的跟踪算法使其返回的结果能够被benchmark平台接受,然后...
2018-08-31 09:14:27 1035 2
翻译 [CVPR2017]CFNet_End-to-end representation learning for Correlation Filter based tracking
CFNet是KCF的作者2017年最新的提出的目标跟踪算法,发表于CVPR2017,非常值得一读。 原文地址:https://arxiv.org/abs/1704.06036v1 工程地址:https://github.com/bertinetto/cfnet引言 多层神经网络是计算机视觉中做图像表达很有用的工具,但是,训练时没有的类别或者某类训练样本很少时,仍是一个很有挑战的问题。这一问题自然
2017-05-15 22:56:26 13822 6
原创 C++对象模型学习
如何实现派生类的基本函数最近看高质量程序设计指南(第三版)林华,复习,学习C++对象知识,要更深入了解,估计得看Lippman的Inside the C+
2017-05-07 22:38:39 441
原创 PyTorch入门学习(一)
PyTorch入门学习(一)目录PyTorch入门学习一PyTorch是一个很流行的开源深度学习平台,风头一度胜过Tensorflow,近期对对抗生成网络GAN比较感兴趣,GAN采用生成式和判别式网络,生成模型G捕捉样本数据
2017-05-06 22:17:13 8629
原创 [目标跟踪]long term correlation filter CVPR2015文章
1.文章综述 目标跟踪是计算机视觉领域的基础问题。目标跟踪过程中会遇到如目标遮挡,光线变化,镜头移动等问题。目前也没有一种跟踪算法能够完美解决所有这些问题,而这篇文章关注目标跟踪过程中目标的外形发生明显变化时的情况。目标外形发生变化可能是由于物体变形,突然运动,出画或者严重的遮挡。本文方法基于两个两点。首先,当连续两帧之间有微小变化时,对目标和它的上下文信息(context)而非仅对目
2016-11-03 22:17:16 4820 1
原创 [wiki]windows下重新编译OpenCV 及其附加库 opencv_contrib, 生成Python接口
OpenCV 3 之后改变了框架,采用了主体+插件的方式,插件里是一些新功能,有些还不稳定,官方在不断地更新。项目想用python调用opencv,低版本的opencv里的跟踪算法不够先进,OpenCV 3.1官方release的python接口(pyd文件)不含SURF,SIFT,Tracking等模块,要想使用OpenCV中的这些方法,就需要重新编译OpenCV及其附加插件库:opencv_c
2016-09-12 16:04:07 4522 19
原创 [Wiki]Ubuntu16.04+CUDA8.0编译Caffe过程
编译caffe是一个比较复杂的过程,我选择的是Ubuntu16.04和CUDA8.0,都是比较新的版本。参考链接:Caffe官方链接,官方针对Ubuntu16.04的安装教程给的非常快,也给出了一些问题的解决方法。CUDA安装CUDA 8.0目前需要注册Nvidia的账号才能下载,我选择的是X86_64的.run文件格式。安装CUDA的过程中需要先将图形界面关掉。ctrl+alt+F1切换到命令行模
2016-07-26 12:38:21 926
转载 基于深度学习的目标检测研究进展
本文主要对基于深度学习的目标检测算法进行剖析和总结,文章分为四个部分:第一部分大体介绍下传统目标检测的流程,第二部分介绍以R-CNN为代表的结合region proposal和CNN分类的目标检测框架(R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN); 第三部分介绍以YOLO为代表的将目标检测转换为回归问题的目标检测框架(YOLO, SSD); 第四部分介绍一些可以提高目标检测性能的
2016-06-04 21:12:29 1907
原创 【目标跟踪】Learning to Track at 100 FPS with Deep Regression Networks 学习
这篇文章是斯坦福大学2016年4月发的,文中提出了一种通过离线训练带标签的视频来更有效跟踪目标物体的方法。以前的深度学习用来做跟踪的算法都比较慢,这一论文的跟踪器使用了简单的前向传播而无需在线训练,测试时的跟踪帧率达到了100fps.由于在训练网络时既使用了带标签的视频,也使用了大量的图片,可以防止过拟合。跟踪器学习了泛化的运动特征,所以可以去跟踪训练集中没有出现的新物体。传统通用目标跟踪器(相对于特定目标跟踪器)
2016-06-02 21:18:42 8046 2
原创 Ubuntu系统必须软件安装备忘
Ubuntu系统必须软件安装备忘以前装的Ubuntu 14.04的系统,本来对双显卡就支持的不是太好,自己又更新了显卡驱动,可能不是太适配,直接导致无法进入桌面系统,在对命令行不熟悉的情况下将所有的N卡驱动文件全部删除,无奈重装。新装的Ubuntu 16.04 对双显示器的支持好多了,然而,重装后好多必须的环境和软件是需要安装的,命令行比较难记,记在博客里备忘。1.安装搜狗拼音输入法
2016-05-30 23:01:25 569
原创 [神经网络]从反向传播(BP)到去噪自动编码器(DAE)
本文主要总结一下神经网络几种训练机制,不仅简单介绍这几种训练机制的步骤和优缺点,而且从发展,进化的角度理清训练机制不断改进的思路和解决方案,以加深对这几种网络的理解,文中没有公式,适合DL入门者。BP(back propagation ),也叫误差反传播,是传统神经网络(相对于深度神经网络)中采用的训练机制。改方法通过随机设定网络参数的初值,计算输入在当前网络下的输出结果.
2016-05-21 10:05:54 12036
转载 Deep Learning(深度学习)资料汇总
Deep Learning(深度学习)ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的
2016-05-11 20:56:47 5904
原创 PCL环境配置迁移指南
研究过点云(PointCloud)的同学都知道,环境的配置是一个十分头疼的问题,编译一遍源码十分耗时。配好环境感觉就是解决了一个大问题,网上讲配置环境的文章已经有相当多,但初学者仍然可能会遇到各种各样的问题。点云中国论坛和QQ群的活跃程度已经严重下降,还在研究点云的同学能获得的帮助可能更少了。在本科研究了两年的点云,走过了很多坑,也总结了一些经验,现在挑重要的,典型的问题发出来一些解决办法,希望对正
2015-11-24 15:23:12 1161
原创 线性表的顺序列表实现
线性表的顺序列表实现教材:Data Structures and Algorithm Analysis in C++(Third Edition) 线性表:线性表是由element组成的有限且有序的序列,有序指的是每一个元素都有自己的位置,并非指按其值大小排序。而按照元素其值与元素位置的关系可以分为有序线性表(sorted list)和无序线性表(unsorted list)
2015-11-24 15:02:43 798
OpenCV 及其附加库 opencv_contrib Python接口,pyd文件
2017-06-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人