题意
有k个人买票,可以一个一个的买,有k种等待时间cost[i],也可以相邻的两个人一起买,有k-1种等待时间dcost[i],问如何买票可以使得总时间最小。
分析
对于第i个人来说他买票有三种可能,自己单独买,和上一个相邻的伙计一起买,和下一个伙计一起买。但是他和下个人一起买与下个一个人和他一起买是一样的情况。因此这里只考虑上一个人的。这里这样定义dp数组dp[i]:第i个人买票时和他前面所有人的等待时间最少。上述分析可知dp[i+1]=min(dp[i]+cost[+1i],dp[i-1]+dcost[i]).dp[k-1]就是最小时间。最后他还要求转化成时分秒的形式,这个我用到了一个to_string()函数,这个函数可以转化整形和浮点成string。最后还要用am和pm来表示。
#include <iostream>
#include <cstring>
#include <string>
#define INF 1000000
using namespace std;
int min(int a, int b)
{
return a < b ? a : b;
}
int main()
{
int n;
cin >> n;
while (n--)
{
int k, cost[2005], dcost[2005];
cin >> k;
for (int i = 0; i < k; i++)
cin >> cost[i];
for (int i = 0; i < k - 1; i++)
cin >> dcost[i];
int dp[2005];
//因为是最小值,所以要初始最大化
for (int i = 0; i < k; i++)
dp[i] = INF;
dp[0] = cost[0];
dp[1] = min(cost[0] + cost[1], dcost[0]);
//构建dp数组
for (int i = 1; i < k-1; i++)
{
dp[i + 1] = min(dp[i] + cost[i + 1], dp[i - 1] + dcost[i]);
}
//先求出时分秒的整数表达
int h, m1, m2, s;
s = dp[k - 1] % 60;
m1 = dp[k - 1] / 60;
m2 = m1 % 60;
h = (m1 / 60) + 8;
string a = to_string(h);
//判断是否需要进成pm
bool flag = 0;
if (h >= 12) { h -= 12; flag = 1; }
if (h < 10) a = "0" + a;//如果是个位前面要补零
a += ":";
if (m2 < 10) a = a + "0" + to_string(m2);
else a += to_string(m2);
a += ":";
if (s > 0 && s < 10) a = a + "0" + to_string(s);
else a += to_string(s);
if (flag) a += " pm";
else a += " am";
cout << a << endl;
}
return 0;
}