Tensorflow学习:模型构造,模型优化的简单示例

Tensorflow学习:模型构造,模型优化的简单示例

import tensorflow as tf
import numpy as np

# Tensorflow:模型构造和模型优化的简单示例

# 使用numpy生成100个随机点(作为样本)
x_data = np.random.rand(100)
y_data = x_data * 0.1 + 0.2

# 构造一个线性模型(用来拟合上面的随机点样本)
b = tf.Variable(0.)
k = tf.Variable(0.)
# k,b:两个变量:通过梯度下降法来改变这两个值
y = k * x_data + b

# 二次代价函数loss
# y_data为真实值,y为预测的值:求误差的平方,再求一个平方
loss = tf.reduce_mean(tf.square(y_data - y))

# 定义一个梯度下降法来进行训练的优化器:学习率为:0.2
optimizer = tf.train.GradientDescentOptimizer(0.2)

# 定义一个最小化的代价函数(训练的目的)
train = optimizer.minimize(loss)

# 初始化变量
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    # 进行迭代
    for step in range(201):
        sess.run(train)
        if step % 20 == 0:
            print(step, sess.run([k, b]))

在这里插入图片描述

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页