Tensorflow学习
空城不空99
耐得住寂寞,守得住繁华!
展开
-
Tensorflow学习:验证码识别(模型训练使用Tmodels-master中slim下nets的alexnet进行训练)
Tensorflow学习:验证码识别(模型训练使用models-master中slim下nets的alexnet进行训练)# coding: utf-8import osimport tensorflow as tffrom PIL import Imagefrom nets import nets_factoryimport numpy as np# 不同字符数量CHAR_SET_LEN = 10# 图片高度IMAGE_HEIGHT = 60# 图片宽度IMAGE_WIDTH =原创 2020-08-08 15:38:27 · 444 阅读 · 2 评论 -
Tensorflow学习:生成tfrecord文件
Tensorflow学习:生成tfrecord文件import tensorflow as tfimport osimport randomimport mathimport sysfrom PIL import Imageimport numpy as np# 验证集数量_NUM_TEST = 500# 随机种子_RANDOM_SEED = 0# 数据集路径DATASET_DIR = "D:/workspace/PyCharm/venv/cuiyongling/captch原创 2020-08-07 20:23:55 · 350 阅读 · 0 评论 -
Tensorflow学习:验证码生成
Tensorflow学习:验证码生成验证码生成库:from captcha.image import ImageCaptcha随机函数:import random# 验证码生成库from captcha.image import ImageCaptcha # pip install captchaimport numpy as npfrom PIL import Imageimport randomimport sysnumber = ['0', '1', '2', '3', '4',原创 2020-08-07 19:35:34 · 228 阅读 · 0 评论 -
Tensorflow学习:训练自己的简单图像识别模型(图片分类模型)
Tensorflow学习:训练自己的简单图像识别模型(图片分类模型)1、利用inception的模型做基础,加一层输出层图片分类,只训练最后一层就好,前面的利用他们训练好的权值。2、google提供的训练文件,自己提供训练的图片训练集。利用官方提供的retrain.py进行训练,通过Windows的一个批处理文件retrain.bat执行官方提供的retrain.py程序。...原创 2020-08-07 18:22:17 · 2762 阅读 · 0 评论 -
Tensorflow学习:数据集下载
Tensorflow学习:数据集下载(网页爬图片)1、在训练图像识别模型时,想从网上抓取一些类别的图片,下面附上代码:import urllib.requestimport reimport osimport urllibdef get_html(url): page = urllib.request.urlopen(url) html_a = page.read() return html_a.decode('utf-8')def get_img(html):原创 2020-08-07 16:08:46 · 1701 阅读 · 1 评论 -
Tensorflow学习:win10安装tensorflow-gpu
Tensorflow学习:win10安装tensorflow-gpu1、安装CUDA1)确认自己的笔记本带有NVIDIA的显卡。电脑->属性->设备管理器->显示适配器2)下载安装CUDA 。https://developer.nvidia.com/cuda-downloads下载的安装包如下:安装过程 和安装其他应用一样,直接下一步下一步,中间可能会有闪屏的现象。3)安装好之后把CUDA安装目录下的bin和lib\x64添加到 Path环境变量中。bin路径:C:\P原创 2020-08-06 22:36:32 · 324 阅读 · 0 评论 -
Tensorflow学习:使用inception-v3做图像识别
Tensorflow学习:使用inception-v3做图像识别import tensorflow as tfimport osimport numpy as npfrom PIL import Imageimport matplotlib.pyplot as plt'''数据预处理'''class NodeLookup(object): def __init__(self): label_lookup_path = 'inception_model/imagen原创 2020-08-06 00:47:03 · 268 阅读 · 0 评论 -
Tensorflow学习:下载google图像识别网络inception-v3
Tensorflow学习:下载google图像识别网络inception-v3inception做分类一共有1000个分类import tensorflow as tfimport osimport tarfileimport requests# inception模型(Google已经训练好的模型)下载地址inception_pretrain_model_url = 'http://download.tensorflow.org/models/image/imagenet/inceptio原创 2020-08-05 18:10:16 · 778 阅读 · 0 评论 -
Tensorflow学习:saver_restore模型载入(手写数字识别,简单神经网络)
Tensorflow学习:saver.restore模型载入(手写数字识别,简单神经网络) saver = tf.train.Saver() saver.restore(sess,'net/my_net.ckpt')import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one原创 2020-08-05 16:10:40 · 278 阅读 · 0 评论 -
Tensorflow学习:saver_save保存模型(手写数字识别,简单神经网络)
Tensorflow学习:saver_save保存模型import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去batch_size = 100# 计算一共多少个批次 //:原创 2020-08-05 15:50:30 · 784 阅读 · 0 评论 -
Tensorflow学习:循环(递归/记忆)神经网络RNN(手写数字识别:MNIST数据集分类)
Tensorflow学习:循环(递归/记忆)神经网络RNN(手写数字识别:MNIST数据集分类)import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 输入图片是28*28像素n_inputs = 28 # 输入一行,一行有28个数据(输入层有28个原创 2020-08-05 15:08:27 · 366 阅读 · 0 评论 -
Tensorflow学习:Tensorboard可视化-卷积神经网络CNN应用于手写数字识别(MNIST数据集分类)
Tensorflow学习:Tensorboard可视化-卷积神经网络应用于手写数字识别(MNIST数据集分类)import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去batc原创 2020-08-04 22:11:16 · 762 阅读 · 0 评论 -
Tensorflow学习:卷积神经网络CNN应用于手写数字识别(MNIST数据集分类)
Tensorflow学习:卷积神经网络应用于手写数字识别(MNIST数据集分类)import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去batch_size = 100#原创 2020-08-04 21:13:58 · 1154 阅读 · 0 评论 -
Tensorflow学习:Tensorboard可视化
Tensorflow学习:Tensorboard可视化import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datafrom tensorflow.contrib.tensorboard.plugins import projector# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 运行次数max_ste原创 2020-08-04 18:08:29 · 236 阅读 · 0 评论 -
Tensorflow学习:Tensorboard网络运行
Tensorflow学习:Tensorboard网络运行# 定义一个函数:参数概要(分析的参数一般是权值和偏置值(数据比较多时,算他的平均值标准差才有意义))def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) # 平均值 with tf.name_scope(原创 2020-08-04 17:38:51 · 255 阅读 · 0 评论 -
Tensorflow学习:Tensorboard网络结构
Tensorflow学习:Tensorboard网络机构定义一个命名空间:with tf.name_scope(‘input’):import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵原创 2020-08-03 22:14:41 · 368 阅读 · 0 评论 -
Tensorflow学习:手写数字识别完整版(准确率高达98%)
Tensorflow学习:手写数字识别完整版(准确率高达99.9%)# 解决过拟合的方法:dropoutimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去batch_原创 2020-08-03 20:52:02 · 1583 阅读 · 1 评论 -
Tensorflow学习:优化器
Tensorflow学习:优化器import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去batch_size = 100# 计算一共多少个批次 //:整除n_batch原创 2020-08-03 20:30:34 · 158 阅读 · 0 评论 -
Tensorflow学习:过拟合
Tensorflow学习:过拟合#解决过拟合的方法:dropoutimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去batch_size = 100# 计算一原创 2020-08-03 18:00:40 · 356 阅读 · 0 评论 -
Tensorflow学习:手写数字识别(简单的神经网络,不含隐层:MNIST数据集分类简单版本)
Tensorflow学习:手写数字识别(简单的神经网络,不含隐层)import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据集mnist = input_data.read_data_sets("MNST_data", one_hot=True)# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去batch_size = 100# 计算一共多少个原创 2020-08-03 15:07:00 · 255 阅读 · 0 评论 -
Tensorflow学习:非线性回归(神经网络)
Tensorflow学习:线性回归(神经网络)import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt# 使用numpy生成200个随机点(训练样本):-0.5-0.5平均分布的点:增加一个维度,200行1列x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]# 生成一些噪音noise = np.random.normal(0, 0.02, x_data.原创 2020-08-01 14:12:35 · 418 阅读 · 0 评论 -
Tensorflow学习:模型构造,模型优化的简单示例
Tensorflow学习:模型构造,模型优化的简单示例import tensorflow as tfimport numpy as np# Tensorflow:模型构造和模型优化的简单示例# 使用numpy生成100个随机点(作为样本)x_data = np.random.rand(100)y_data = x_data * 0.1 + 0.2# 构造一个线性模型(用来拟合上面的随机点样本)b = tf.Variable(0.)k = tf.Variable(0.)# k,b:两原创 2020-08-01 12:41:53 · 250 阅读 · 0 评论 -
Tensorflow学习:Fetch and Feed
Tensorflow学习:Fetch and Feedimport tensorflow as tf# Fetch:在会话里面同时运行多个opinput1 = tf.constant(3.0)input2 = tf.constant(2.0)input3 = tf.constant(5.0)# 定义一个加法opadd = tf.add(input2, input3)# 定义一个乘法opmul = tf.multiply(input1, add)# 定义一个会话,启动默认图,不用原创 2020-07-31 22:18:40 · 109 阅读 · 0 评论 -
Tensorflow学习:变量
Tensorflow学习:变量1、加法与减法变量需要初始化:init = tf.global_variables_initializer()import tensorflow as tf# 定义一个变量x = tf.Variable([1, 2])# 定义一个常量a = tf.constant([3, 3])# 定义一个减法opsub = tf.subtract(x, a)# 定义一个加法的opadd = tf.add(x, a)# 全局变量的初始化init = tf.glob原创 2020-07-31 22:01:37 · 123 阅读 · 0 评论 -
Tensorflow安装
TensorFlow安装TensorFlow即可以支持CPU,也可以支持CPU+GPU。前者的环境需求简单,后者需要额外的支持。TensorFlow是基于VC++2015开发的,所以需要下载安装VisualC++ Redistributable for Visual Studio 2015 来获取MSVCP140.DLL的支持。1、下载并安装anaconda2、下载并安装Python编译器,以3.7X为例。1)、检查Anaconda是否成功安装:conda --versionC:\Windows原创 2020-07-31 21:18:56 · 380 阅读 · 0 评论 -
Tensorflow学习:创建图,启动图
Tensorflow学习:创建图,启动图import tensorflow as tf#创建一个常量opm1 = tf.constant([[3,3]])m2 = tf.constant([[2],[3]])#创建一个矩阵乘法opproduct = tf.matmul(m1,m2)#方法1:定义一个会话,启动默认图sess = tf.Session()result = sess.run(product)print(result)#关闭会话sess.close()#方法2:定义原创 2020-07-31 21:36:29 · 161 阅读 · 0 评论