[原]推荐引擎算法学习导论

            推荐引擎算法学习导论:协同过滤、聚类、分类

作者:July。
出处:结构之法算法之道


引言

    昨日看到几个关键词:语义分析,协同过滤,智能推荐,想着想着便兴奋了。于是昨天下午开始到今天凌晨3点,便研究了一下推荐引擎,做了初步了解。日后,自会慢慢深入仔细研究(日后的工作亦与此相关)。当然,此文也会慢慢补充完善。

    本文作为对推荐引擎的初步介绍的一篇导论性的文章,将略去大部分的具体细节,侧重用最简单的语言简要介绍推荐引擎的工作原理以及其相关算法思想,且为了着重浅显易懂有些援引自本人1月7日在微博上发表的文字(特地整理下,方便日后随时翻阅),尽量保证本文的短小。不过,事与愿违的是,文章后续补充完善,越写越长了

    同时,本文所有相关的算法都会在日后的文章一一陆续具体阐述。本文但求微言导论,日后但求具体而论。若有任何问题,欢迎随时不吝赐教或批评指正。谢谢。

1、推荐引擎原理

    推荐引擎尽最大努力的收集尽可能多的用户信息及行为,所谓广撒网,勤捕鱼,然后“特别的爱给特别的你”,最后基于相似性的基础之上持续“给力”,原理如下图所示(图引自本文的参考资料之一:探索推荐引擎内部的秘密):

2、推荐引擎的分类

     推荐引擎根据不同依据如下分类:

  1. 根据其是不是为不同的用户推荐不同的数据,分为基于大众行为(网站管理员自行推荐,或者基于系统所有用户的反馈统计计算出的当下比较流行的物品)、及个性化推荐引擎(帮你找志同道合,趣味相投的朋友,然后在此基础上实行推荐);
  2. 根据其数据源,分为基于人口统计学的(用户年龄或性别相同判定为相似用户)、基于内容的(物品具有相同关键词和Tag,没有考虑人为因素),以及基于协同过滤的推荐(发现物品,内容或用户的相关性推荐,分为三个子类,下文阐述);
  3. 根据其建立方式,分为基于物品和用户本身的(用户-物品二维矩阵描述用户喜好,聚类算法)、基于关联规则的(The Apriori algorithm算法是一种最有影响的挖掘布尔关联规则频繁项集的算法)、以及基于模型的推荐(机器学习,所谓机器学习,即让计算机像人脑一样持续学习,是人工智能领域内的一个子领域)。
     关于上述第二个分类(2、根据其数据源)中的基于协同过滤的推荐:随着 Web2.0 的发展,Web 站点更加提倡用户参与和用户贡献,因此基于协同过滤的推荐机制因运而生。它的原理很简单,就是根据用户对物品或者信息的偏好,发现物品或者内容本身的相关性,或者是发现用户的相关性,然后再基于这些关联性进行推荐。
    而基于协同过滤的推荐,又分三个子类
  1. 基于用户的推荐(通过共同口味与偏好找相似邻居用户,K-邻居算法,你朋友喜欢,你也可能喜欢),
  2. 基于项目的推荐(发现物品之间的相似度,推荐类似的物品,你喜欢物品A,C与A相似,可能也喜欢C),
  3. 基于模型的推荐(基于样本的用户喜好信息构造一个推荐模型,然后根据实时的用户喜好信息预测推荐)。
    我们看到,此协同过滤算法最大限度的利用用户之间,或物品之间的相似相关性,而后基于这些信息的基础上实行推荐。下文还会具体介绍此协同过滤。
    不过一般实践中,我们通常还是把推荐引擎分两类:
  • 第一类称为协同过滤,即基于相似用户的协同过滤推荐(用户与系统或互联网交互留下的一切信息、蛛丝马迹,或用户与用户之间千丝万缕的联系),以及基于相似项目的协同过滤推荐(尽最大可能发现物品间的相似度);
  • 第二类便是基于内容分析的推荐(调查问卷,电子邮件,或者推荐引擎对本blog内容的分析)。
3、新浪微博推荐机制
    在 新浪微博推荐好友的机制中:1、我与A非好友,但我的好友中有不少人与A是好友,即我和A有不少共同的好友,那么系统便会把A也推荐给我(新浪称之为共同好友)2、我关注的人中有不少人关注了B,那么系统推测我也可能会喜欢B,从而亦会把B也推荐给我(新浪称之为间接关注人)
    但新浪实际操作起来,这两种方式会搅在一起,如我关注的人中,有不少人关注了B,但事实上这关注B的不少人中有些也是我的好友。以上推荐方式,统称为基于相似用户的协同过滤推荐(无非就是找到:用户与用户之间千丝万缕的联系,或是从你的好友入手,或是从你关注的人入手)。
    当然,还有一类比如人气用户推荐,便是上文所述的基于大众行为的推荐,即人云亦云、跟风。系统推测大家都喜欢的,可能你也会喜欢。如大家都知道姚晨新浪微博粉丝数量排第一,则争相关注,最终粉丝量越推越高。两种推荐方式如下图所示:
    不过,上述不论是基于用户的推荐方式,还是基于大众行为的推荐都并没有真正寻找到用户与用户之间共同的兴趣,偏好和口味,因为很多的时候,朋友的朋友不一定能成为你自己的朋友,且有的人清高于世,你们都追求的,我偏不屑。所以,从分析用户发表的微博的内容相关入手,找到各自共同的关注点、兴趣点才是王道 。当然新浪微博最近让用户选择给自己发表的微博内容打上标签,以利于日后寻找微博内容中相关用户共同的标签tag,关键词,此种推荐方式正是基于微博内容分析的推荐。如下图:

    只是问题是,谁会不遗余力发完微博后,还去给它添加什么标签呢?所以,新浪微博还得努力,寻找另一种更好地分析微博内容的方式。不然系统全盘扫描海里用户的海里微博内容,则恐怕吃不消也负担不起。

    然个人觉得倒是可以从微博关键词(标签tag云)和每个用户为自己打的标签(打着越多的共同标签可定义为相似用户)入手,如下图左右部分所示:

    也就是说,通过共同的好友和通过间接关注的人来定义相似用户是不靠谱的,只有通过基于微博内容的分析寻找相似用户才是可行之道,同时,更进一步,通过微博内容分析得到标签tag云后,再从中找到相同或相近的标签tag云寻找相似的用户无疑比已有推荐好友方式(通过共同的好友和通过间接关注的人来定义相似用户)更靠谱。

3.1、多种推荐方式结合

    在现行的 Web 站点上的推荐往往都不是单纯只采用了某一种推荐的机制和策略,他们往往是将多个方法混合在一起,从而达到更好的推荐效果。

    举个例子如Amazon中除此基于用户的推荐之外,还会用到基于内容的推荐(物品具有相同关键词和Tag):如新产品的推荐;基于项目的协同过滤推荐(喜欢ACA类似,可能也喜欢C):如捆绑销售and别人购买/浏览的商品。

    总之,多种推荐方式结合,加权(用线性公式(linear formula)将几种不同的推荐按照一定权重组合起来,具体权重的值需要在测试数据集上反复实验,从而达到最好的推荐效果。)、切换、分区、分层等混合。但不论是哪种推荐方式,一般也就涵盖在上文所述的推荐方式中。


4、协调过滤推荐

    协同过滤是利用集体智慧的一个典型方法。要理解什么是协同过滤 (Collaborative Filtering, 简称 CF),首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而我们一般更倾向于从口味比较类似的朋友那里得到推荐。这就是协同过滤的核心思想。

4.1、协同过滤推荐步骤

    做协同过滤推荐,一般要做好以下几个步骤:

1)若要做协同过滤,那么收集用户偏好则成了关键。可以通过用户的行为诸如评分(如不同的用户对不同的作品有不同的评分,而评分接近则意味着喜好口味相近,便可判定为相似用户),投票,转发,保存,书签,标记,评论,点击流,页面停留时间,是否购买等获得。如下面第2点所述:所有这些信息都可以数字化,如一个二维矩阵表示出来。

2)收集了用户行为数据之后,我们接下来便要对数据进行减噪与归一化操作(得到一个用户偏好的二维矩阵,一维是用户列表,另一维是物品列表,值是用户对物品的偏好,一般是 [0,1] 或者 [-1, 1] 的浮点数值)。下面再简单介绍下减噪和归一化操作:

  • 所谓减噪:用户行为数据是用户在使用应用过程中产生的,它可能存在大量的噪音和用户的误操作,我们可以通过经典的数据挖掘算法过滤掉行为数据中的噪音,这样可以是我们的分析更加精确(类似于网页的去噪处理)。
  • 所谓归一化:将各个行为的数据统一在一个相同的取值范围中,从而使得加权求和得到的总体喜好更加精确。最简单的归一化处理,便是将各类数据除以此类中的最大值,以保证归一化后的数据取值在 [0,1] 范围中。至于所谓的加权,很好理解,因为每个人占的权值不同,类似于一场唱歌比赛中对某几个选手进行投票决定其是否晋级,观众的投票抵1分,专家评委的投票抵5分,最后得分最多的选手直接晋级。

3)找到相似的用户和物品,通过什么途径找到呢?便是计算相似用户或相似物品的相似度。

4)相似度的计算有多种方法,不过都是基于向量Vector的,其实也就是计算两个向量的距离,距离越近相似度越大。在推荐中,用户-物品偏好的二维矩阵下,我们将一个用户对所有物品的偏好作为一个向量来计算用户之间的相似度,或者将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度。

        相似度计算算法可以用于计算用户或者项目相似度。以项目相似度计算(Item Similarity Computation)为列,通性在于都是从评分矩阵中,为两个项目i,j挑选出共同的评分用户,然对这个共同用户的评分向量,进行计算相似度si,j如下图所示,行代表项目,列代表用户(注意到是从i,j向量中抽出共有的评论,组成的一对向量,进行相似度计算):

    所以说,很简单,找物品间的相似度,用户不变,找多个用户对物品的评分;找用户间的相似度,物品不变,找用户对某些个物品的评分。

5)而计算出来的这两个相似度则将作为基于用户、项目的两项协同过滤的推荐。常见的计算相似度的方法有:欧几里德距离,皮尔逊相关系数(如两个用户对多个电影的评分,采取皮尔逊相关系数等相关计算方法,可以抉择出他们的口味和偏好是否一致Cosine相似度,Tanimoto系数。下面,简单介绍其中的欧几里得距离与皮尔逊相关系数:

  •     欧几里德距离(Euclidean Distance)是最初用于计算欧几里德空间中两个点的距离,假设 x,y 是 n 维空间的两个点,它们之间的欧几里德距离是:

    可以看出,当 n=2 时,欧几里德距离就是平面上两个点的距离。当用欧几里德距离表示相似度,一般采用以下公式进行转换:距离越小,相似度越大(同时,避免除数为0):

  • 余弦相似度 Cosine-based Similarity
    两个项目 i ,j 视作为两个m维用户空间向量,相似度计算通过计算两个向量的余弦夹角,那么,对于m*n的评分矩阵,i ,j 的相似度 sim ) 计算公式:
    (其中 " · "记做两个向量的内积)
  • 皮尔逊相关系数一般用于计算两个定距变量间联系的紧密程度,为了使计算结果精确,需要找出共同评分的用户。记用户集U为既评论了 i 又评论了 j 的用户集,那么对应的皮尔森相关系数计算公式为

    其中Ru,i 为用户u 对项目 i 的评分,对应带横杠的为这个用户集U对项目i的评分评分

6)相似邻居计算。邻居分为两类:1、固定数量的邻居K-neighborhoods (或Fix-size neighborhoods),不论邻居的远近,只取最近的 个,作为其邻居,如下图A部分所示;2、基于相似度门槛的邻居,落在以当前点为中心,距离为 的区域中的所有点都作为当前点的邻居,如下图B部分所示。

    再介绍一下K最近邻(k-Nearest Neighbor,KNN)分类算法:这是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

7)经过4)计算出来的基于用户的CF(基于用户推荐之用:通过共同口味与偏好找相似邻居用户,K-邻居算法,你朋友喜欢,你也可能喜欢),基于物品的CF(基于项目推荐之用:发现物品之间的相似度,推荐类似的物品,你喜欢物品A,C与A相似,那么你可能也喜欢C)

    一般来说,社交网站内如facebook宜用User CF(用户多嘛),而购书网站内如Amazon宜用Item CF(你此前看过与此类似的书比某某也看过此书更令你信服,因为你识书不识人)。 

4.2、基于项目相似度与基于用户相似度的差异

    上述3.1节中三个相似度公式是基于项目相似度场景下的,而实际上,基于用户相似度与基于项目相似度计算的一个基本的区别是,基于用户相似度是基于评分矩阵中的行向量相似度求解,基于项目相似度计算式基于评分矩阵中列向量相似度求解,然后三个公式分别都可以适用,如下图:

(其中,为0的表示未评分)

  • 基于项目相似度计算式计算如Item3,Item4两列向量相似度;
  • 基于用户相似度计算式计算如User3,User4量行向量相似度。

5、聚类算法

    聚类聚类,通俗的讲,即所谓物以类聚,人以群分。聚类 (Clustering) 是一个数据挖掘的经典问题,它的目的是将数据分为多个簇 (Cluster),在同一个簇中的对象之间有较高的相似度,而不同簇的对象差别较大。

5.1、K 均值聚类算法

    K-均值(K-Means)聚类算法与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。此算法假设对象属性来自于空间向量,目标是使各个群组内部的均方误差总和最小。

  K均值聚类算法首先会随机确定K个中心位置(位于空间中代表聚类中心的点),然后将各个数据项分配给最临近的中心点。待分配完成之后,聚类中心就会移到分配给该聚类的所有节点的平均位置处,然后整个分配过程重新开始。这一过程会一直重复下去,直到分配过程不再产生变化为止。下图是包含两个聚类的K-均值聚类过程:

    以下代码所示即是此K-均值聚类算法的python实现:

//K-均值聚类算法  
import random  
  
def kcluster(rows,distance=pearson,k=4):  
  # 确定每个点的最小值和最大值  
  ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows]))   
  for i in range(len(rows[0]))]  
  
  # 随机创建k个中心点  
  clusters=[[random.random()*(ranges[i][1]-ranges[i][0])+ranges[i][0]   
  for i in range(len(rows[0]))] for j in range(k)]  
    
  lastmatches=None  
  for t in range(100):  
    print 'Iteration %d' % t  
    bestmatches=[[] for i in range(k)]  
      
    # 在每一行中寻找距离最近的中心点  
    for j in range(len(rows)):  
      row=rows[j]  
      bestmatch=0  
      for i in range(k):  
        d=distance(clusters[i],row)  
        if d0:  
        for rowid in bestmatches[i]:  
          for m in range(len(rows[rowid])):  
            avgs[m]+=rows[rowid][m]  
        for j in range(len(avgs)):  
          avgs[j]/=len(bestmatches[i])  
        clusters[i]=avgs  
    
  # 返回k组序列,其中每个序列代表一个聚类      
  return bestmatches  

    k-Means是一种机器学习领域中的一种监督学习。下面,简要介绍下监督学习与无监督学习:

  • 监管学习的任务是学习带标签的训练数据的功能,以便预测任何有效输入的值。监管学习的常见例子包括将电子邮件消息分类为垃圾邮件,根据类别标记网页,以及识别手写输入。创建监管学习程序需要使用许多算法,最常见的包括神经网络、Support Vector Machines (SVMs) 和 Naive Bayes 分类程序。
  • 无监管学习的任务是发挥数据的意义,而不管数据的正确与否。它最常应用于将类似的输入集成到逻辑分组中。它还可以用于减少数据集中的维度数据,以便只专注于最有用的属性,或者用于探明趋势。无监管学习的常见方法包括分层集群和自组织地图。

5.2、Canopy 聚类算法 

    Canopy 聚类算法的基本原则是:首先应用成本低的近似的距离计算方法高效的将数据分为多个组,这里称为一个 Canopy,我们姑且将它翻译为华盖Canopy 之间可以有重叠的部分;然后采用严格的距离计算方式准确的计算在同一 Canopy 中的点,将他们分配与最合适的簇中。Canopy 聚类算法经常用于 均值聚类算法的预处理,用来找合适的 值和簇中心。

5.3、模糊 均值聚类算法 

        模糊 均值聚类算法是 均值聚类的扩展,它的基本原理和 均值一样,只是它的聚类结果允许存在对象属于多个簇,也就是说:它属于我们前面介绍过的可重叠聚类算法。为了深入理解模糊 K 均值和 K 均值的区别,这里我们得花些时间了解一个概念:模糊参数(Fuzziness Factor)。

    与 K 均值聚类原理类似,模糊 K 均值也是在待聚类对象向量集合上循环,但是它并不是将向量分配给距离最近的簇,而是计算向量与各个簇的相关性(Association)。假设有一个向量 v,有 k 个簇,v 到 k 个簇中心的距离分别是 d1,d2

Link URL: http://blog.csdn.net/v_july_v/article/details/7184318

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/25835657/viewspace-716235/,如需转载,请注明出处,否则将追究法律责任。

user_pic_default.png
请登录后发表评论 登录
全部评论
<%=items[i].createtime%>

<%=items[i].content%>

<%if(items[i].items.items.length) { %>
<%for(var j=0;j
<%=items[i].items.items[j].createtime%> 回复

<%=items[i].items.items[j].username%>   回复   <%=items[i].items.items[j].tousername%><%=items[i].items.items[j].content%>

<%}%> <%if(items[i].items.total > 5) { %>
还有<%=items[i].items.total-5%>条评论 ) data-count=1 data-flag=true>点击查看
<%}%>
<%}%>
<%}%>

转载于:http://blog.itpub.net/25835657/viewspace-716235/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
蛋白质是生物体中普遍存在的一类重要生物大分子,由天然氨基酸通过肽键连接而成。它具有复杂的分子结构和特定的生物功能,是表达生物遗传性状的一类主要物质。 蛋白质的结构可分为四级:一级结构是组成蛋白质多肽链的线性氨基酸序列;二级结构是依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠;三级结构是通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构;四级结构用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。 蛋白质在生物体内具有多种功能,包括提供能量、维持电解质平衡、信息交流、构成人的身体以及免疫等。例如,蛋白质分解可以为人体提供能量,每克蛋白质能产生4千卡的热能;血液里的蛋白质能帮助维持体内的酸碱平衡和血液的渗透压;蛋白质是组成人体器官组织的重要物质,可以修复受损的器官功能,以及维持细胞的生长和更新;蛋白质也是构成多种生理活性的物质,如免疫球蛋白,具有维持机体正常免疫功能的作用。 蛋白质的合成是指生物按照从脱氧核糖核酸(DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。这个过程包括氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放以及蛋白质合成后的加工修饰等步骤。 蛋白质降解是指食物中的蛋白质经过蛋白质降解酶的作用降解为多肽和氨基酸然后被人体吸收的过程。这个过程在细胞的生理活动中发挥着极其重要的作用,例如将蛋白质降解后成为小分子的氨基酸,并被循环利用;处理错误折叠的蛋白质以及多余组分,使之降解,以防机体产生错误应答。 总的来说,蛋白质是生物体内不可或缺的一类重要物质,对于维持生物体的正常生理功能具有至关重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值