自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

原创 一文上手决策树和随机森林和KNN-python

写在前面我们在数据分析或者建模中经常会用到机器学习模型中的树模型或者近邻的方法,通过本文可以使你快速搭建出一个可以运行的效果还不错的模型,但是原理可以通过其他的博客自己补一下~ 写这篇文章也是想让自己记录一下,方便以后用的时候直接拿来用。我认为这里面最好用的还是当属可视化部分代码啦~毕竟学习之前也不知道可视化竟然这么方便!本文主要分为三个部分,分别是决策树的用法;KNN的用法;随机森林的用法。其实三者在sklearn里调包的话差别不大,细微差别。适合像我一样的小白中的小白,可以大体了解一下~高手绕道

2022-05-05 15:37:23 1802

原创 Memory Augmented Graph Neural Networks for Sequential Recommendation翻译

论文下载地址:https://arxiv.org/abs/1912.11730摘要在许多推荐系统中,用户-物品交互的时间顺序可以反映用户行为的时间演化和顺序。用户将与之交互的项可能取决于过去访问的项。然而,随着用户和项目的大量增加,序贯推荐系统仍然面临着不小的挑战:**(1)短期用户兴趣建模的难度;(2)获取长期用户兴趣的难度;(3)项目共现模式的有效建模。**为了解决这些挑战,我们提出了一个内存增强图neual网络(MA-GNN)来同时捕捉长期和短期用户兴趣。具体地说,我们应用一个图神经网络来建模短期

2020-05-30 13:27:40 2094

转载 半监督学习的分类

https://blog.csdn.net/jiusake/article/details/80016171

2020-05-11 21:23:37 512

原创 入门GCN需要读的三篇论文

https://zhuanlan.zhihu.com/p/94689360详见

2020-05-11 10:54:22 1172

原创 GNN-图神经网络 Gragh-Neural-Net浅析

为什么我们要使用GNN来做(改进)推荐系统模型?由于推荐系统的高实际价值,越来越多的研究人员开始提出基于会话的推荐方案。基于马尔可夫链的推荐系统:该模型基于用户上一次的行为来预测用户的下一次行为,然而由于强独立性相关假设,该模型的预测结果并不十分准确。基于循环神经网络(RNN)的推荐系统:相比于传统的推荐问题,基于会话的推荐问题的不同点在于如何利用用户的短期会话交互信息数据来预测用户可能会感...

2020-04-29 14:30:27 388

原创 【SR-GNN】Session-based Recommendation with Graph Neural Networks详解

结构图:首先,将所有会话序列建模为定向会话图,其中每个会话序列可以作为子图处理。然后依次处理每个会话图,通过门控图神经网络得到每个图中所有节点的潜在向量。然后,我们将每个会话表示为全局首选项和用户当前对该会话的兴趣的组合,其中这些全局和本地会话嵌入向量都由节点的潜在向量组成。最后,对于每个会话,我们预测每个条目成为下一个单击的概率。在真实数据集上进行的大量实验证明了该方法的有效性。开源代码在...

2020-04-27 17:15:37 1940

原创 pytorch的故障解决方法

pytorch故障汇总1.问题:ModuleNotFoundError:no module named ‘tools.nnwrap’2.问题:No module named ‘torch._C’3.问题:init() got an unexpected keyword argument ‘target_tensor’4.问题:DataLoader worker (pid(s) xxxxx,...

2020-04-24 11:15:02 1655

原创 推荐系统技术评估及高效算法 蜗牛式学习螺旋上天

一本636页的书…我恨…第一章:简介推荐系统的功能对于服务提供商增加物品销售数量出售更多种类的物品增加用户满意度、增加用户忠诚度更加了解用户需求其他功能帮助消费者发现一些好的物品帮助消费者发现所有好的物品产品注释推荐系列产品搭配推荐闲逛(发现用户的兴趣点)发现可信的推荐系统完善用户资料自我表达帮助他人影响他人数据和知识资源构建物品模型(属性、特征表示)...

2020-04-21 15:43:07 201

原创 推荐系统的评分预测问题

这本书到目前为止都在讨论TopN的问题,说明这个问题真的很重要,因为TopN问题十分接近于满足实际系统的需求,实际系统绝大多数情况下就是给用户提供一个包括N个物品的个性化推荐列表。评分预测问题都是推荐系统研究的核心。评分预测问题就是如何通过已知得用户历史评分记录预测未知的用户评分记录。离线实验方法评分预测问题基本都是通过离线实验进行研究。一般可以用均方根误差RMSE度量预测的精度:评分预...

2020-04-20 17:02:09 1313

原创 10条在设计推荐系统中学到的经验和教训

10条在设计推荐系统中学到的经验和教训(1) 确定你真的需要推荐系统。推荐系统只有在用户遇到信息过载时才必要。如果你的网站物品不太多,或者用户兴趣都比较单一,那么也许并不需要推荐系统。所以不要纠结于推荐系统这个词,不要为了做推荐系统而做推荐系统,而是应该从用户的角度出发,设计出能够真正帮助用户发现内容的系统,无论这个系统算法是否复杂,只要能够真正帮助用户,就是一个好的系统。(2) 确定商业目标...

2020-04-20 16:47:44 105

原创 利用上下文信息进行个性化推荐

利用上下文信息进行个性化推荐主要分为两大方面,一是时间上下文,二是地点上下文。经过了解,感觉这个地点上下文更接近于老师想做的商圈推荐,但是还有些不一样。慢慢了解吧。本章主要讨论时间上下文并简单的介绍了一下地点上下文,具体的东西还要自己去看看。推荐系统需要结合用户所处的上下文,包括用户访问系统的时间、地点、心情等,对于提高推荐系统的推荐效果是非常重要的。 即研究如何给用户生成TopN推荐表,并...

2020-04-17 11:36:55 277

原创 推荐系统实践》第四章 利用用户标签数据

《推荐系统实践》第四章推荐系统的目的是联系用户的兴趣和物品,而这种联系需要依赖不同的媒介。根据维基百科的定义,标签是一种无层次化结构的、用来描述信息的关键词,他可以用来描述物品的语义。 标签分为两种,一种是让普通用户给物品打标签,也就是UGC(用户 生成 内容)。另一种是让作者或者专家打标签(这个代价有点高)像是UGC标签系统的代表应用有 Delicious、citeUlike、last.f...

2020-04-16 16:22:08 283

原创 深度学习在物品冷启动问题上的应用

昨天开组会,讲论文的时候老师一直在问我推荐系统中数据缺失方面的知识,之前没太考虑过,就随口说了一个冷启动的问题,解释了一下。确实后来想想,冷启动问题确实是推荐系统里数据缺失的一部分。原有的根据用户冷启动、物品冷启动、系统冷启动解决方法可以解决冷启动的问题,以及利用专家标注数据去解决冷启动问题。但是深度学习在冷启动问题上也有很好的解决办法,又搬出了网络这个利器。基于专家的CF方法,可以降低对用...

2020-04-15 10:47:45 836

原创 推荐系统的冷启动问题(第三章)

《推荐系统实践》的第三章是推荐系统的冷启动问题什么的冷启动呢?从字面意思来说,就是一切从零开始启动, 但是推荐系统是个借助于历史操作记录和行为等信息进行推荐判断的操作,没有任何之前可以利用的信息,怎么进行推荐呢?这就是冷启动问题。1、冷启动问题简介用户冷启动:主要解决如何给新用户做个性化推荐的问题。物品冷启动:主要解决如何将新物品推荐给可能对他感兴趣的用户这一问题。系统冷启动:主要是解决...

2020-04-14 11:40:25 134

原创 关于卷积的Github

https://github.com/vdumoulin/conv_arithmetic

2020-04-12 20:47:24 201

转载 DeepFM论文详解

目前的CTR预估模型,实质上都是在“利用模型”进行特征工程上狠下功夫。传统的LR,简单易解释,但特征之间信息的挖掘需要大量的人工特征工程来完成。由于深度学习的出现,利用神经网络本身对于隐含特征关系的挖掘能力,成为了一个可行的方式。DNN本身主要是针对于高阶的隐含特征,而像FNN(利用FM做预训练实现embedding,再通过DNN进行训练,有时间会写写对该模型的认识)这样的模型则是考虑了高阶特征,...

2020-04-10 12:59:36 357

原创 Wide&Deep

Wide & Deep Learning for Recommender Systems推荐系统中的Wide & Deep Learning摘要Generalized linear models with nonlinear feature transformations are widely used for large-scale regression and class...

2020-04-09 22:49:51 248

原创 《推荐系统实践》第二章感想(跟推荐系统与深度学习第四章很像)

利用用户行为数据这一章的题目是利用用户行为数据,简而言之呢就是来探讨一下如何利用用户的点击行为、浏览行为等等数据,通过用户之间的关联,物品与物品之间的关联,来达到推荐系统的目的。主要介绍了UserCF、ItemCF这两个比较常见的算法,进而介绍了LFM以及LFM的改进。然后对他们进行了对比。啤酒和尿布上来就介绍了啤酒和尿布这个经典的不能再经典的故事,讲的是妇女要在家里照顾孩子,爸爸要出去买尿...

2020-04-08 16:51:52 1010

原创 《推荐系统实践》自己随手写的感想+重点

今天开始读《推荐系统实践》这本书了,所以想先搁浅一下《推荐系统与深度学习》的笔记,一起更吧,哎太懒了。第一章:好的推荐系统略了吧,主要介绍了一些很牛逼的视频网站啊或者其他网站用的推荐系统对他们带来了什么好的影响啊。像是广告啊,音乐啊,视频啊,新闻啊等等,都需要用到推荐系统。但是第一章有个重要的地方就是介绍了推荐系统进行实验的方法有三种,分别是:离线实验、用户调查、在线实验。**离线实验:*...

2020-04-07 21:48:14 414

原创 推荐系统与深度学习(一)开端

推荐系统与深度学习开端????本来是做视觉方向的,忽然被老师谈话考虑现在深度学习与图像太过于热了,而且已有的模型很难做改动且太多人想用深度学习去做图像处理方面。所以推荐系统与深度学习的融合也许会摩擦出一些不一样的火花。今年来,随着深度学习的火热,推荐系统在深度学习的加入下也发生了翻天覆地的变化。两周内读完了《推荐系统与深度学习》这本书,但是只是有了个大体框架,又入手了项亮老师的《推荐系统实践》,希望...

2020-04-07 13:57:37 587

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除