机器学习-高斯模型

这篇博客探讨了当现实世界的数据不遵循线性模型时,如何转向使用高斯模型,即正态分布。作者介绍了高斯模型在处理非线性关系中的作用,强调了误差变量独立同分布的假设,并阐述了如何构建目标函数以解决这一问题。通过最大似然估计,可以找到参数的最大值,从而解决非线性问题。
摘要由CSDN通过智能技术生成

高斯模型的公式推导过程
通过学习线性模型之后,我们会有这样的疑问,如果现实中实例,他的分布不是线性模型的话怎么办?事实上,现实中很多实例他并不是服从线性关系。
比如智商分布图
这里写图片描述
这里写图片描述

对于这样的问题,很显然我们依然用线性模型的话是不合适的。
由此,我们引入高斯模型。高斯模型即是我们所熟悉的正太分布。

这里写图片描述

在使用这一模型的前提条件是,我们假设 在不同的测试数据中,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值