高斯混合模型 (Gaussian Mixture Model)
引言
高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的概率模型,用于表示具有多个高斯分布的复杂数据集。它广泛应用于聚类分析、模式识别、图像处理等领域。本文将详细介绍高斯混合模型的基本概念、数学原理、参数估计方法以及应用实例。
基本概念
高斯混合模型是一种加权组合模型,它假设数据集中的每一个数据点都是由多个高斯分布生成的。每个高斯分布称为一个“成分”(component),整个数据集的概率密度函数是这些成分的加权和。
高斯分布
一个一维高斯分布的概率密度函数为:
高斯混合模型
参数估计
高斯混合模型的参数包括每个成分的均值向量、协方差矩阵和权重。这些参数通常通过最大期望算法(Expectation-Maximization,简称EM算法)进行估计。
EM算法
EM算法包括两个主要步骤:
- 期望步骤(E步):计算每个数据点属于各个成分的后验概率。
- 最大化步骤(M步):根据E步计算的后验概率,重新估计模型参数。
具体步骤如下: