高斯混合模型 (Gaussian Mixture Model)

高斯混合模型 (Gaussian Mixture Model)

引言

高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的概率模型,用于表示具有多个高斯分布的复杂数据集。它广泛应用于聚类分析、模式识别、图像处理等领域。本文将详细介绍高斯混合模型的基本概念、数学原理、参数估计方法以及应用实例。

基本概念

高斯混合模型是一种加权组合模型,它假设数据集中的每一个数据点都是由多个高斯分布生成的。每个高斯分布称为一个“成分”(component),整个数据集的概率密度函数是这些成分的加权和。

高斯分布

一个一维高斯分布的概率密度函数为:

在这里插入图片描述

高斯混合模型

在这里插入图片描述

参数估计

高斯混合模型的参数包括每个成分的均值向量、协方差矩阵和权重。这些参数通常通过最大期望算法(Expectation-Maximization,简称EM算法)进行估计。

EM算法

EM算法包括两个主要步骤:

  1. 期望步骤(E步):计算每个数据点属于各个成分的后验概率。
  2. 最大化步骤(M步):根据E步计算的后验概率,重新估计模型参数。

具体步骤如下:

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值