1、word2vec

本文探讨了文本相似度的传统词袋模型,并引入现代词向量计算方法,包括CBOW模型的工作原理及HierarchicalSoftmax和NegativeSampling优化策略,旨在深入理解自然语言处理中的文本表示。
摘要由CSDN通过智能技术生成

1、以前怎么计算两句话的相似度呢?就是词袋模型

      我很帅   》[1(我),1(帅),1(很),0(不)]

      我不帅   》[1,1,0,1]

2、现在怎么计算呢?就是把每个字转换成一个向量(也可以把一句话变成一个向量)下面是两种经典模型

CBOW简单说一下:一共N个字,上下文各两个字,每个字是一个1*N向量,对应位置是1,其余全为0.然后呢乘以一个N*K的矩阵,K就是词向量的维度,再叠加,再乘以一个K*N的矩阵再softmax,得到一个1*N的向量,与这个字做比较,计算损失就行了,bp算法,最后得到N*K的矩阵用来计算每个字的词向量。

这样是不是就完美了?但是这样一个字一个字来很慢啊,效率很重要呀,

解决方案:Hierarchical SoftmaxNegative Sampling两种方法

我之前上传的资料里面有一个讲Word2vec数学原理的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值