之前一共实现了6种比较常见的排序算法,分别是:
效率:
衡量一个算法的效率包括空间和时间,有时候还要考虑稳定性。
前3种排序的方法效率较低,实现也比较简单,适合规模比较小的排序,个人认为适合排序总量在10000以下的随机数组。
后3种排序的方法效率较高,实现稍微复杂一点,但也还好,适合规模较大的排序。
时间方面,前3种排序的复杂度都是O(N^2),后3种排序的复杂度都是O(N*LogN),即呈指数级减少(因为基本思路都是递归的方式分治)。当然了,这是平均情况。
空间方面,即是否需要额外的空间,只有归并排序需要一个数组长度相同的空间来存储排序的结果,即O(N)。快速排序的需要O(log2N)。其余排序都不需要额外的空间。
稳定性方面,只有插入排序和归并排序是稳定的。稳定性保证的是数组中值相等的数据在排序时顺序不变,这在纯int型数组时没什么意义,但如果是复杂数据结构的排序,如果改变了顺序则可能影响数据结构中其他字段的排序。
疑问:谁能告诉我为什么快速排序的空间复杂度是O(log2N)?
特点:
每种排序都有自己的特点,要不然也不会留传了这么久。以下是个人看法:
冒泡排序:比较SB,只适合教学,效率低,但易实现。但能保证稳定。
选择排序:比冒泡排序好一点,好的地方是交换次数少了,但仍然很SB。而且不稳定。
插入排序:有点像打扑克牌时的排序,但插入时会让数组的移动变多,如果是链表则效率很高。且能保证稳定。
归并排序:典型地递归分治,缺点是需要额外的空间来存储结果。但能保证稳定。
快速排序:跟归并排序很像,但区别是归并排序切分的中点是数组索引,快速排序切分的中点是第一个数据的值。相同的是,都要碰运气。但不稳定。
堆排序:思路很特别,花了好几个班车上的时间片,另外用了扑克牌演示每一步的过程才弄明白流程。但不稳定。
运行时间比较:
这里就专门写个测试程序来测试一下这6种排序算法的运行时间倒底区别有多大。
随机生成100,000个数:
const int N = 200000;
int O = 0;
int* GenRandom()
{
srand( (unsigned)time( NULL ) );
int* a = new int[N];
for (int i = 0; i < N; i++)
{
a[i] = rand()*rand() ;
}
return a;
}
用下面的代码来计算时间:
SYSTEMTIME StartTime = {0};
FILETIME StartFileTime = {0};
SYSTEMTIME EndTime= {0};
FILETIME SEndFileTime= {0};
int _tmain(int argc, _TCHAR* argv[])
{
int* a = GenRandom();
GetLocalTime(&StartTime);
printf("timeBefore %d:%d:%d \r\n", StartTime.wMinute, StartTime.wSecond, StartTime.wMilliseconds);
BubbleSort(a);
/*SelectionSort(a);
InsertSort(a);
MergeSort(a,0,N-1);
QuickSort(a,0,N-1);
HeapSort(a,0,N);*/
GetLocalTime(&EndTime);
printf("timeAfter %d:%d:%d \r\n", EndTime.wMinute, EndTime.wSecond, EndTime.wMilliseconds);
return 0;
}
依次得到的结果如下:
BubbleSort:1分37秒818,是的,你没看错。。
SelectionSort :12秒338。
InsertSort:1分11秒23。
MergeSort:1秒598
QuickSort:0秒036
HeapSort:0秒081
说多了都是泪....这才是100,000个数,假设要是千万级的,差别就更大了,可能冒泡需要几个小时。。而快速和堆排序都表现的相当优秀。
这也难怪快速排序叫做快速排序。
实现代码:
以防我的代码实现的有问题,影响了测试效果,特将代码列与此,如果有不足之处请各位指教和指正:
// Defines the entry point for the console application.
//
#include "stdafx.h"
#include "windows.h"
#include "time.h"
const int N = 100000;
int O = 0;
int* GenRandom()
{
srand( (unsigned)time( NULL ) );
int* a = new int[N];
for (int i = 0; i < N; i++)
{
a[i] = rand()*rand();
}
return a;
}
void swap(int& a, int& b)
{
int temp = 0;
temp = a;
a = b;
b = temp;
}
//small -> large
void SelectionSort(int* ua)
{
//round times,遍历N次
for (int i = 0; i < N-1; i++)
{
int nMinIndex = i; //最小值的索引
//每次确定一个值,从第一个值开始。。。第二次从第二个值开始
for (int j = i + 1; j < N; j++)
{
if( ua[nMinIndex] >= ua[j] )
{
nMinIndex = j;
}
O++;
}
swap(ua[i], ua[nMinIndex] );
}
}
//small -> large
void InsertSort(int* ua)
{
//round times
for (int i = 1; i <= N; i++)
{
for (int j = i; j > 0; j--)
{
if( ua[j] < ua[j-1] )
{
swap(ua[j], ua[j-1] );
}
}
}
}
//small -> large
void BubbleSort(int* ua)
{
O = 0;
//round times
for (int i = 0; i < N; i++)
{
/*printf("round %d \r\n", i);
for (int i = 0; i < N; i++)
{
printf("a[%d]=%d \r\n",i, *(ua+i));
} */
for (int j = 0; j < (N-i-1); j++)
{
if(ua[j] > ua[j+1])
{
swap(ua[j], ua[j+1] );
}
O++;
}
}
}
void Merge(int* ua, int nStart, int nMid, int nEnd)
{
int a[N];
int i = nStart;
int j = nMid + 1;
for (int k = nStart; k <= nEnd; k++)
{
a[k] = ua[k];
}
for (int k = nStart; k <= nEnd; k++)
{
if(i > nMid)
{
ua[k] = a[j++];
}
else if(j > nEnd)
{
ua[k] = a[i++];
}
else if( a[j] < a[i])
{
ua[k] = a[j++];
}
else
{
ua[k] = a[i++];
}
/*printf("round %d \r\n", k);
for (int k = nStart; k < nEnd; k++)
{
printf("a[%d]=%d \r\n", k, *(ua + k));
} */
}
}
//small -> large
void MergeSort(int* ua, int nStart, int nEnd)
{
//递归退出条件
if(nStart >= nEnd)
{
return;
}
int nMid = nStart + (nEnd - nStart) / 2;
MergeSort(ua, nStart, nMid);
MergeSort(ua, nMid+1, nEnd);
Merge(ua, nStart, nMid, nEnd);
}
int QuickPartition(int* ua, int nStart, int nEnd)
{
int i = nStart;
int j = nEnd + 1;
//中点值
int nFlagValue = ua[nStart];
while(1)
{
//找到左边大于中点的值,记录索引
while( ua[++i] < nFlagValue )
{
if( i == nEnd)
{
break;
}
}
//找到右边小于中点的值,记录索引
while( ua[--j] > nFlagValue )
{
if( j == nStart)
{
break;
}
}
//两边向中间靠拢的过程中相遇则退出
if( i >= j)
{
break;
}
//交换两边的值
swap( ua[i], ua[j] );
}
//将右边最后一个小于中点值的数与中点值交换位置,
//保证中点值的左边都小于中点值,右边都大于中点值
swap( ua[nStart], ua[j] );
//返回将右边最后一个小于中点值的数的索引,做为右边部分的中点值。
return j;
}
void QuickSort(int* ua, int nStart, int nEnd)
{
//递归退出条件
if(nStart >= nEnd)
{
return;
}
int nMid = QuickPartition(ua, nStart, nEnd);
QuickSort(ua, nStart, nMid-1);
QuickSort(ua, nMid+1, nEnd);
}
void HeapAdjust(int* ua, int nStart, int nEnd)
{
int nMaxIndex = 0;
while ( ( 2*nStart + 1) < nEnd )
{
nMaxIndex = 2*nStart + 1;
if ( ( 2*nStart + 2) < nEnd)
{
//比较左子树和右子树,记录较大值的Index
if (ua[2*nStart + 1] < ua[2*nStart + 2])
{
nMaxIndex++;
}
}
//如果父结点大于子节点,则退出,否则交换
if (ua[nStart] > ua[nMaxIndex])
{
break;
}
else
{
swap( ua[nStart], ua[nMaxIndex] );
//堆被破坏,继续递归调整
nStart = nMaxIndex;
}
}
/*for (int i = 0; i < N; i++)
{
printf("%d ",ua[i]);
}
printf("\r\n");*/
//printf("%d ", O++);
}
void HeapSort(int* ua, int nStart, int nEnd)
{
for (int i = nEnd/2 -1; i >= 0 ; i--)
{
HeapAdjust( ua, i, nEnd);
}
for (int i = nEnd-1; i > 0; i--)
{
swap(ua[0], ua[i]);
HeapAdjust(ua, 0, i);
}
}
SYSTEMTIME StartTime = {0};
FILETIME StartFileTime = {0};
SYSTEMTIME EndTime= {0};
FILETIME SEndFileTime= {0};
int _tmain(int argc, _TCHAR* argv[])
{
int* a = GenRandom();
GetLocalTime(&StartTime);
printf("timeBefore %d:%d:%d \r\n", StartTime.wMinute, StartTime.wSecond, StartTime.wMilliseconds);
//BubbleSort(a);
//SelectionSort(a);
//InsertSort(a);
//MergeSort(a,0,N-1);
//QuickSort(a,0,N-1);
HeapSort(a,0,N);
GetLocalTime(&EndTime);
printf("timeAfter %d:%d:%d \r\n", EndTime.wMinute, EndTime.wSecond, EndTime.wMilliseconds);
printf("times %d \r\n", O);
return 0;
}