如何查看所有已安装的Windows驱动程序的列表

本文介绍了一种简便的方法来查看计算机上所有已安装的Windows驱动程序,包括使用内置命令行工具和第三方实用程序。这对于游戏爱好者和需要解决驱动相关问题的用户特别有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Drivers aren’t something that you need to be terribly worried about anymore unless you’re a gamer, but when you are troubleshooting a problem it can be useful to see what you have installed. But who wants to click through every item in Device Manager?

除非您是游戏玩家否则 不必再担心驱动程序了,但是在解决问题时,查看已安装的内容可能会很有用。 但是谁想点击“设备管理器”中的每个项目?

For the most part, you can just use the drivers included in Windows Update, but if you have a high performance PC with a good graphics card, you’re probably going to want to install the latest graphics drivers. Listing out the drivers can also quickly tell you what version you currently have installed, which is pretty useful.

在大多数情况下,您只能使用Windows Update中包含的驱动程序 ,但是如果您有一台具有良好图形卡的高性能PC,则可能要安装最新的图形驱动程序 。 列出驱动程序还可以快速告诉您当前已安装的版本,这非常有用。

如何列出所有已安装的Windows驱动程序 (How to List All Installed Windows Drivers)

Luckily there’s a built-in utility that will spit out a list of all the installed drivers, and it couldn’t be simpler. All you need to do is open up a command prompt and type in the following:

幸运的是,有一个内置的实用程序可以吐出所有已安装驱动程序的列表,而且再简单不过了。 您需要做的只是打开命令提示符,然后键入以下内容:

driverquery

驱动查询

That will give you a list of the drivers and date associated to each. If you want more information, like the actual driver file, you can use the /V command, which you might consider pairing with | more so it doesn’t go flying by.

这将为您提供驱动程序列表以及与每个驱动程序相关的日期。 如果需要更多信息(例如实际的驱动程序文件),可以使用/ V命令,可以将其与| more配对| more | more所以它不会飞逝。

driverquery /V

驱动程序查询/ V

There are a number of other options that will spit out the results to a CSV file format or show you which drivers are signed. You can use /? as the command to see how they work.

还有许多其他选项可将结果吐出为CSV文件格式,或显示已签名的驱动程序。 您可以使用 /? 作为查看它们如何工作的命令。

使用InstalledDriversList (Using InstalledDriversList)

If you aren’t a big fan of the command line, you can use the freeware InstalledDriversList utility from NirSoft. The great thing about NirSoft is that he never bundles crapware or spyware with any of his utilities. We’ve been huge fans for years, and we’ll continue to be.

如果您不太喜欢命令行,则可以使用NirSoft免费软件InstalledDriversList实用程序 。 NirSoft的伟大之处在于,他永远不会将垃圾软件或间谍软件与任何实用程序捆绑在一起。 多年来,我们一直是忠实粉丝,而且我们将继续如此。

Once you download and extract the utility from the zip file, you can simply run it to see all the details. You can double-click on anything in the list to see more information, and there are a lot of extra columns of information that show everything from the path of the driver to the version and date.

从zip文件下载并提取实用程序后,您只需运行它即可查看所有详细信息。 您可以双击列表中的任何内容以查看更多信息,并且还有很多额外的信息列,这些列显示从驱动程序的路径到版本和日期的所有内容。

The green icons indicate that Windows is currently using that driver, while yellow means that it is installed but not activated. If you see a red icon, that means that there’s probably an issue with that driver, which can be a great way to troubleshoot.

绿色图标表示Windows当前正在使用该驱动程序,而黄色表示已安装但尚未激活。 如果看到红色图标,则表示该驱动程序可能存在问题,这可能是解决问题的好方法。

翻译自: https://www.howtogeek.com/205355/how-to-see-a-list-of-all-installed-windows-drivers/

<think>好的,我现在需要帮助用户了解AdamW优化器的工作原理和使用方法。首先,我应该回顾之前的对话,确保信息的一致性。用户之前询问了YOLOv8的超参数设置,其中提到了优化器参数,比如SGD和Adam。现在用户引用了三篇关于优化器的文章,特别是AdamW,并希望了解其工作原理和应用。 首先,我需要确认用户的基础知识。用户可能已经对Adam优化器有一定了解,因为AdamW是基于Adam的改进。我需要解释AdamW与Adam的区别,特别是权重衰减的处理方式。根据引用[3],AdamW在Adam的基础上加入了权重衰减正则化,但处理方式不同。Adam中通常将权重衰减与梯度更新合并,而AdamW则将权重衰减分离出来,直接应用到参数上,这样可以更有效地防止过拟合。 接下来,我需要整理AdamW的工作原理。根据引用[1]和[3],AdamW的公式应该在Adam的基础上调整权重衰减的应用位置。要分步骤解释:首先,计算一阶和二阶动量;然后,应用学习率和偏差校正;接着,进行参数更新时,将权重衰减独立于梯度计算之外。 然后,用户可能想知道如何在实践中使用AdamW。根据引用[2],例如在HuggingFace的BERT训练中,使用AdamW时指定了优化器类型、学习率、权重衰减等参数。需要给出具体的代码示例,比如在PyTorch中的实现,以及参数设置的注意事项,比如学习率范围、权重衰减值的选择。 此外,用户可能关心AdamW的优势,比如为什么在NLP模型中更受欢迎。需要结合引用内容,说明分离权重衰减可以避免优化器将正则项与梯度耦合,从而提高模型泛化能力。同时,引用[2]提到工业级应用中的技巧,如学习率预热和梯度裁剪,这些也是使用AdamW时的最佳实践。 还需要对比Adam和AdamW的区别,确保用户明确两者的不同。引用[3]指出,Adam的正则化可能被自适应学习率抵消,而AdamW通过解耦权重衰减,使得正则化效果更稳定。这部分需要用公式或示意图来辅助说明。 最后,应用场景部分需要涵盖计算机视觉和自然语言处理,尤其是像YOLOv8这样的模型是否适用AdamW。在之前的回答中,用户提到YOLOv8默认使用SGD,但AdamW可能在特定情况下有效,比如需要快速收敛或处理复杂数据时。 整个过程中,需要保持结构清晰,分点说明,并引用提供的资料来增强可信度。同时,注意用户可能希望将AdamW应用到他们的YOLOv8训练中,因此需要给出实际的操作建议,如修改配置文件或调整超参数。需要确保回答准确,同时覆盖理论、实现和应用,帮助用户全面理解AdamW。</think>#### AdamW 优化器深度解析与应用指南 --- ### 一、AdamW 核心原理 1. **与 Adam 的关键区别** AdamW 通过**解耦权重衰减与梯度更新**解决了 Adam 优化器的正则化缺陷[^3]。 - **Adam 的缺陷**:将权重衰减(L2正则化)与梯度计算耦合,导致自适应学习率削弱正则化效果 - **AdamW 的改进**:将权重衰减独立作用于参数本身,公式对比: - **Adam**: $$ \theta_{t+1} = \theta_t - \eta \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} - \eta \lambda \theta_t $$ - **AdamW**: $$ \theta_{t+1} = \theta_t - \eta \cdot \left( \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} + \lambda \theta_t \right) $$ 其中 $\lambda$ 为权重衰减系数,$\eta$ 为学习率[^3] 2. **数学原理流程** - **Step 1**: 计算梯度一阶矩估计(动量) $$ m_t = \beta_1 m_{t-1} + (1-\beta_1)g_t $$ - **Step 2**: 计算梯度二阶矩估计(自适应学习率) $$ v_t = \beta_2 v_{t-1} + (1-\beta_2)g_t^2 $$ - **Step 3**: 偏差校正(Bias Correction) $$ \hat{m}_t = \frac{m_t}{1-\beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1-\beta_2^t} $$ - **Step 4**: 解耦权重衰减的参数更新 $$ \theta_{t+1} = \theta_t - \eta \left( \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} + \lambda \theta_t \right) $$ --- ### 二、代码实现与参数设置 #### 1. PyTorch 实现示例 ```python import torch from torch.optim import AdamW model = ... # 定义模型 optimizer = AdamW( model.parameters(), lr=5e-5, # 典型初始学习率 betas=(0.9, 0.999), # 动量衰减系数 weight_decay=0.01, # 权重衰减强度 eps=1e-8 # 数值稳定性系数 ) ``` #### 2. 关键参数说明 | 参数 | 典型值范围 | 作用说明 | |----------------|----------------|---------------------------------| | `lr` | $1e^{-5}$~$1e^{-3}$ | 控制参数更新步长,需与 batch size 匹配调整 | | `weight_decay` | $0.01$~$0.1$ | 控制模型复杂度,防止过拟合的关键参数 | | `betas` | $(0.9, 0.999)$ | 一阶/二阶动量衰减率,影响梯度估计的平滑度 | | `eps` | $1e^{-8}$ | 防止分母为零的极小值 | --- ### 三、应用场景与最佳实践 1. **优势场景** - **自然语言处理**:BERT、GPT 等预训练模型的标配优化器(HuggingFace 默认配置)[^2] - **大模型训练**:与 LAMB 优化器配合处理超大 batch size 场景 - **图像分类任务**:ResNet、ViT 等模型的稳定收敛选择 2. **工业级调优技巧** - **学习率预热**:前 500-1000 步逐步提升学习率至设定值(例如线性预热) - **梯度裁剪**:设置 `max_grad_norm=1.0` 防止梯度爆炸 - **权重衰减调度**:训练后期可逐步降低 `weight_decay` 值(如余弦退火) --- ### 四、与 YOLOv8 的结合实践 1. **配置修改方法** 在 `hyp.yaml` 中设置: ```yaml optimizer: AdamW # 替换默认的SGD lr0: 0.001 # 初始学习率建议比SGD小10倍 weight_decay: 0.05 ``` 2. **效果评估指标** - **正向影响**:加快初期收敛速度(mAP@0.5 提升 2-5%) - **风险提示**:可能增加小目标检测的漏检率(需配合增强 `box` 损失权重) --- ### 五、经典问题解决方案 - **训练震荡**: 降低初始学习率(例如从 $3e^{-4}$ 降至 $1e^{-4}$),同时启用梯度裁剪 - **验证集精度停滞**: 尝试调整 `betas=(0.95, 0.999)` 增强动量平滑性 - **显存占用过高**: 使用 `torch.optim.AdamW(..., fused=True)` 启用融合内核优化 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值