HDU1003 Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 149471    Accepted Submission(s): 34914


Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input
  
  
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

Sample Output
   
   
Case 1: 14 1 4 Case 2: 7 1 6

动态规划,一开始是从后向前dp,即用dp[i]表示包含a[i]的子序列的最大sum,递推公式就是dp[i]=max{a[i],a[i]+dp[i+1]}。因为题目要求当两个结果相同时,输出前面的那个,所以采用从前向后dp更好。题目只要求最大和和起始位置,所以不需要保存dp[i].

#include <iostream>
using namespace std;  
#define MAX 100005
int a[MAX];
int main() {
	int T;
	scanf("%d",&T);
	int c=1;
	int dp=0;
	while(T--){
		printf("Case %d:\n",c++);
		int i=0,n=0;
		scanf("%d",&n);
		while(++i<=n) scanf("%d",&a[i]);
		int start=1,end=1,max = a[1],x=1;
		dp=a[1];
		for(i=2;i<=n;i++){
			if(dp>=0) dp+=a[i];
			else{dp=a[i];x=i;}
			if(dp>max){max=dp;end=i;start=x;}
		}
		printf("%d %d %d\n",max,start,end);
		if(T) printf("\n");
	}
	return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值