每个人都是同性恋,呃……垃圾邮件发送者

A clever spammer posted a joke on a forum of mine a few days ago. He had the joke and then 4 links to his websites in his post, I guess the idea being that the joke will buy the moderators' sympathy when they follow their first instinct in deleting the post. 😉

几天前,一个聪明的垃圾邮件发送者在我的一个论坛上发布了一个玩笑。 他开了个玩笑,然后在他的帖子中有4个指向他网站的链接,我想这是当主持人按照删除帖子的第一个本能时,这个玩笑会赢得主持人的同情。 😉

Anyway, it's just a semi-abandoned phpBB install I put up quickly some time ago, so there are no real members, nor moderators. I just opted for keeping the joke and removing the links.

无论如何,这只是我前段时间很快提出的一个半废弃的phpBB安装,因此没有真正的成员,也没有主持人。 我只是选择开玩笑并删除链接。

Spammers, spammers, spammers... Email spam, comment spam, referrer spam... joke spam... what next!?

垃圾邮件发送者,垃圾邮件发送者,垃圾邮件发送者...电子邮件垃圾邮件,评论垃圾邮件,引荐来源垃圾邮件...笑话垃圾邮件...接下来怎么办??

Oh, the joke:

呵呵,这个笑话:

EVERYBODY IS GAY

每个人都是同性恋

A guy came into a bar one day and said to the bartender, "Give me six double vodkas."

有一天,一个男人走进酒吧,对酒保说:“给我六个伏特加酒。”

The bartender says, "Wow! you must have had one hell of a day." "Yes, I''ve just found out my older brother is gay."

调酒师说:“哇!你一天一定有个地狱。” “是的,我刚刚发现我的哥哥是同性恋。”

The next day the same guy came into the bar and asked for the same drinks. When the bartender asked what the problem was today the answer came back, "I''ve just found out that my younger brother is gay too!"

第二天,同一个人进入酒吧,要求提供相同的饮料。 当酒保问今天是什么问题时,答案又回来了:“我刚刚发现我的弟弟也是同性恋!”

On the third day the guy came into the bar and ordered another six double vodkas. The bartender said, "Jesus! Doesn''t anybody in your family like women?"

第三天,那个家伙走进酒吧,又点了六双伏特加酒。 酒保说:“耶稣!您家中有人没有像女人一样?”

"Yeah, my wife..."

“是的,我的妻子...”

Tell your friends about this post on Facebook and Twitter

FacebookTwitter上告诉您的朋友有关此帖子的信息

翻译自: https://www.phpied.com/everybody-is-gay-er-spammer/

各向同性分布是指表示学习模型中,期望向量在空间上尽量均匀分布的理想状态。在各向同性分布中,相似的向量距离应该相近,表示学习的目标是实现向量的对齐和均匀性。\[1\] 各向异性分布是表示学习模型中的一个问题,指模型训练过程中产生的词向量各维度表征不一致的情况。这导致获得的句向量无法直接进行比较。各向异性分布的向量表征分布较为集中,彼此间的余弦相似度很高,这不是一个好的表示。向量分布的聚集性限制了句向量的语义表达能力。因此,当使用Bert等模型得到句向量后,采用余弦相似度无法很好地衡量两个句子的相似度,因为Bert输出的句向量不是基于一个标准正交基得到的。\[2\] 为了解决各向异性分布的问题,可以采用各向异性校正方法。这些方法的核心思想是对模型输出的向量进行线性变换,以校正向量的分布。一些代表性的工作包括BERT-flow和Bert-Whitening。BERT-flow使用flow模型将向量分布校正为均匀的高斯分布,从而使计算出的余弦相似度更加合理。\[3\] #### 引用[.reference_title] - *1* *2* *3* [NLP领域表达退化&各向异性理解及对应策略总结](https://blog.csdn.net/qq_36332660/article/details/128297528)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值