光纤的损耗机理 散射损耗 吸收损耗 弯曲损耗

光信号在光纤中传输时的功率损耗是光纤的一个重要参数。如果 P 0 P_0 P0 是输入光纤的功率,则输出光纤的功率为
P T = P 0 e − α z P_T=P_0e^{-\alpha z} PT=P0eαz

其中 α \alpha α 是光纤损耗的度量,称为衰减常量 (attenuation constant),或衰减系数 (attenuation coefficient), z z z 是光信号在光纤中传播的距离。实际工程中,我们更习惯用 dB 作为损耗的单位,
α d B = 1 z ⋅ 10 log ⁡ ( P T P 0 ) = 4.343 α \alpha_{dB}=\frac{1}{z}\cdot 10\log\left(\frac{P_T}{P_0}\right)=4.343\alpha αdB=z110log(P0PT)=4.343α
在这里插入图片描述

光纤损耗是与波长有关的。 一根光纤在传播不同波长的光信号时,光信号收到的损耗是不同的。我们通常希望在光纤损耗最低的波长处传播信号, α \alpha α 的典型值 0.2   d B / k m 0.2\ dB/km 0.2 dB/km

导致光纤有损耗的原因有很多,起主导作用的有3个:1. 散射损耗,2. 吸收损耗,3. 弯曲损耗。

散射损耗指的就是瑞利散射,它是光纤不了避免的,决定了光纤损耗的最终极限。由于光纤制作过程中密度不均匀导致了折射率的起伏,使得光会向各个方向散射造成能量的损失。在1550nm附近造成的损耗典型值为
α R = 0.12 ∼ 0.15   d B / k m \alpha_R=0.12\sim0.15\ dB/km αR=0.120.15 dB/km

吸收损耗指的是物理材料会阻碍光信号(电磁波)的传播,吸收一部分的光功率。光纤的主要成分是石英,石英在紫外区和远红外线区存在的电子共振会吸收一部分光功率;光纤中的氢氧根离子杂质,该杂质在1.23um和1.4um附近会阻碍电磁波的传播……

弯曲损耗是我们常常会碰到的,要求光纤不要有大弧度的弯曲,这将导致光功率会从光纤中辐射出去。此外还会导致模式间功率的耦合等等问题,针对于光纤损耗而言,不必要展开阐述的如此详细。

### MATLAB 中分布式光纤瑞利散射传感器的数据处理与算法实现 #### 高斯光束传播模拟器的基础理论 在研究分布式光纤瑞利散射传感器时,可以利用高斯光束传播模型来分析信号特性。通过构建基于 MATLAB 的高斯光束传播模拟器,能够有效预测和验证实验条件下的信号行为[^1]。 #### 瑞利背向散射信号的计算过程 对于传感光纤链路中的某一点作为瑞利背向散射信号的反射点,可以通过以下公式描述其时间延迟、频率变化以及光电流响应: - 计算光纤中的传播时延: \[ t_{\text{delay}} = \frac{2z n}{c} \] - 光开始传播到结束的时间: \[ t = \frac{n z}{c} \] - 加入衰减因素后的瑞利反射系数 \( G \) 表达式为: \[ G = g e^{-a \cdot t_{\text{delay}} c / n} \] 其中,\( z \) 是距离,\( n \) 是折射率,\( c \) 是真空中的光速,\( a \) 是光纤损耗因子,而 \( g \) 则表示初始增益参数。这些公式的具体应用可以在 MATLAB 脚本中体现如下: ```matlab % 参数初始化 n = 1.487; % 折射率 c = 3e8; % 光速 (m/s) g = 0.95; % 增益常数 a = 0.2; % 损耗因子 (dB/km) % 定义空间范围 z = linspace(0, 10, 100); % 光纤长度 (km),采样点数量 % 时间延迟和传播时间 tdelay = 2 * z * n / c; t = n * z / c; % 反射系数计算 G = g .* exp(-a * tdelay * c / n); % 绘制结果 figure; plot(z, G); xlabel('Distance along fiber (km)'); ylabel('Rayleigh Backscatter Coefficient'); title('Attenuation Factor Effect on Rayleigh Scattering'); grid on; ``` 上述代码展示了如何根据给定的距离分布绘制对应的瑞利背向散射强度曲线[^2]。 #### 微分交叉相乘算法的应用 为了进一步提取分布式光纤瑞利散射信号中的有用信息,可采用微分交叉相乘算法(Differential Cross Multiplication Algorithm)。该方法通过对干涉信号加载载波并进行一系列运算操作,从而分离出目标物理量的变化趋势。以下是其实现的核心逻辑: 1. **载波调制**:将原始干涉信号叠加特定形式的正弦或余弦函数; 2. **混频处理**:分别与基频及其二倍频成分混合得到新的输出序列; 3. **低通滤波**:去除高频干扰部分保留主要特征; 4. **积分变换**:累积一段时间内的幅值波动情况获得稳定读数。 下面给出一段简化版 MATLAB 示例用于演示这一流程的关键环节: ```matlab fs = 1e6; % 采样频率 Hz T = 1/fs; % 单周期持续秒数 s L = fs; % 总样本数目 N=Fs*T 秒 t = (0:L-1)*T; % 时间矢量定义域 [s] fc = 50e3; % 载波中心频率 kHz phi_modulated = sin(2*pi*fc*t + randn(size(t))*.1); % 构造输入测试数据集 input_signal = cos(pi/4).*sin(2*pi*(randi([10 20])*1e3)*t)+... sqrt(var(phi_modulated)).*randn(size(t)); % 执行 DCM 运算步骤 output_result = diff(input_signal.*circshift(conj(input_signal),[0 -1])); % 结果可视化对比原形态差异程度 subplot(2,1,1); plot(t,input_signal,'b'); hold all; plot(t,output_result,'r--'); legend({'Input Signal','Processed Output'}); xlim([min(t) max(t)]); ylim([-max(abs(output_result))*1.2,max(abs(output_result))*1.2]); xlabel('Time[s]'); ylabel('Amplitude'); subplot(2,1,2); fft_input = abs(fft(input_signal))/length(input_signal); fft_output = abs(fft(output_result))/length(output_result); freq_vector = (-ceil(L/2):floor((L-1)/2))/(L*T); stem(freq_vector, fftshift(fft_input),'filled','bo', 'MarkerFaceColor',[0 .447 .741]);hold all; stem(freq_vector, fftshift(fft_output),'rx','LineWidth',1.5); legend({'FFT Input Spectrum','DCM Processed FFT'},'Location','NorthEastOutside'); xlabel('Frequency[kHz]'); ylabel('|Magnitude|'); set(gca,'Xlim',[-100 100]*1e3); ``` 此脚本片段不仅实现了基本功能还提供了直观图形化展示效果以便于理解整个工作机理[^3]。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科历杨curlyoung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值