LeetCode 829. 连续整数求和

829. 连续整数求和

给定一个正整数 N,试求有多少组连续正整数满足所有数字之和为 N?

例 1:

输入: 5
输出: 2
解释: 5 = 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5。

示例 2:

输入: 9
输出: 3
解释: 9 = 9 = 4 + 5 = 2 + 3 + 4

示例 3:

输入: 15
输出: 4
解释: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5

说明: 1 <= N <= 10 ^ 9

int consecutiveNumbersSum(int N) {
    int ans = 1;
    int x = 2 * N;
    int index = (int)sqrt(x);
    for(int i = 2;i <= index;i++){
        if(x % i == 0){
            double n2 = (i + x/i - 1)/2;
            double n1 = x / i - n2;
            if(n1 < n2 && (int)n1 == n1 && (int)n2 == n2)
                if ((n1 + n2) * (n2 - n1 + 1) == x) 
                    ans++;
        }
    }
    return ans;
}
首先看题目中给出的N的大小是10^9,由此可以看出O(n)的时间复杂度是肯定会超时的,那么最少也的是O(logn)才可以,分析这题题意,是让我们找到所有连续的序列相加和为n,第一眼看上去肯定是暴力,而暴力肯定是过不了的,换个思路想等差数列的求和公式,
(n1 + n2) * (n2 - n1 + 1)  = 2 * N,其中(n1 + n2) 和 (n2 - n1 + 1)一定要是2*N的因子,因此转化成求2 * N的因子的问题,而经过优化成功的将时间复杂度控制在了O(logn)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值