829. 连续整数求和
给定一个正整数 N
,试求有多少组连续正整数满足所有数字之和为 N
?
示例 1:
输入: 5 输出: 2 解释: 5 = 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5。
示例 2:
输入: 9 输出: 3 解释: 9 = 9 = 4 + 5 = 2 + 3 + 4
示例 3:
输入: 15 输出: 4 解释: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
说明: 1 <= N <= 10 ^ 9
int consecutiveNumbersSum(int N) {
int ans = 1;
int x = 2 * N;
int index = (int)sqrt(x);
for(int i = 2;i <= index;i++){
if(x % i == 0){
double n2 = (i + x/i - 1)/2;
double n1 = x / i - n2;
if(n1 < n2 && (int)n1 == n1 && (int)n2 == n2)
if ((n1 + n2) * (n2 - n1 + 1) == x)
ans++;
}
}
return ans;
}
首先看题目中给出的N的大小是10^9,由此可以看出O(n)的时间复杂度是肯定会超时的,那么最少也的是O(logn)才可以,分析这题题意,是让我们找到所有连续的序列相加和为n,第一眼看上去肯定是暴力,而暴力肯定是过不了的,换个思路想等差数列的求和公式,
(n1 + n2) * (n2 - n1 + 1) = 2 * N,其中(n1 + n2) 和 (n2 - n1 + 1)一定要是2*N的因子,因此转化成求2 * N的因子的问题,而经过优化成功的将时间复杂度控制在了O(logn)。