您经常听到大数据一词。 但这到底是什么意思?
大数据被定义为“可能会挖掘信息的任何数量的结构化,半结构化和非结构化数据。” 太好了,这意味着所有企业需要做的就是概括地以一种可行的方式来驱动这些庞大的数据收集。
如今,企业正在寻求从大量信息中提取价值。 归根结底,如果没有说什么数据就毫无意义了,对吧? 但是,大数据挑战的一部分包括知道使用什么,但知道不使用什么也同样重要。 公司需要对分析内容保持选择性,以免淹死。
在凯捷咨询公司(Capgemini Consulting)2014年11月进行的一项调查中,有79%的参与者表示他们尚未完全整合其所有数据源。 其他实施问题包括数据孤岛,组之间的断开连接以及无效的数据治理。 话虽如此,对于每一个挑战,都有一种解决方案,例如投资于解决大数据问题的工具 。
大数据应用程序也可以使用,但也很容易迷失在周围。 因此,在为他们购物之前,重要的是能够确定最常见的用例 。 根据Cloudera首席执行官汤姆·赖利(Tom Reilly)的说法,他在今年早些时候在结构数据会议上发表讲话说,大数据应用程序分为三类:客户洞察力,产品洞察力和业务风险。
算法在清除大数据混乱方面同样有帮助,但挑战在于确定哪些算法。 幸运的是,一类新型的深度学习算法可以帮助克服这一挑战。
劳顿说:“从本质上讲,这种方法可以识别隐藏在大量数据中的隐藏模式。” “尽管基本的深度学习技术已经存在了数十年,但它们仅限于在一台计算机上工作。 有希望的新架构现在使扩展这些深度学习系统以在云中工作成为可能。”
大数据可以带来的一件有趣的事情是改善业务流程 -好处可能并不那么明显。 据专家乔治·劳顿 ( George Lawton)称 ,迈凯轮应用技术公司(McLaren Applied Technologies)对此进行了探索,“有点类似于将类似城市的景观带给企业。” 它使分析师能够“以不同的方式来优化重要指标”。
大数据正在增长,移动,物联网和Web应用程序的兴起都在推动这一增长。 您的企业将如何利用这一趋势?