吉利率先宣布DeepSeek上车

作者 | 有车有据 编辑 | 智能车参考

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心大模型技术交流群

本文只做学术分享,如有侵权,联系删文

知道DeepSeek这把“火”迟早点燃车圈,但没想到这么快。

1月20号刚刚发布的大模型R1,就是让全世界尤其是海外“震惊”的那一版,现在已经官宣上车

aef365de4f84d067dbc1a886f51d8832.png

更没想到,车圈率先拥抱国产顶尖大模型能力的,是它。

谁上车了DeepSeek大模型?

率先上车DeepSeek大模型的是它杭州老乡——吉利汽车

4c76ec54a2fb78e8ca6a00647d696f4f.png

给用户的体验升级,目前集中在人车交互层面。

后续吉利智能汽车AI不仅能对用户的模糊意图实现精准理解,进而准确调用约2000个车载接口,还能基于车内外场景主动分析用户潜在需求,并为用户主动提供车辆控制、主动对话、售后等等服务。

例如自动调整座椅、提醒车辆保养、拥堵时推荐绕行路线,或根据用户日程提前规划充电等等。

可以理解为对吉利原有的交互模型一次全面的升级彻底打通了车机UI、交互助手与数千种汽车原子化功能的壁垒,“可见即可说”不再限定在某些特定领域,扩展到全车智能。

518c5171787102c2353763046e4ade94.jpeg

据透露,吉利主要使用了知识蒸馏手段,智能车参考之前详细科普过,主要通过让一个较小的模型学习较大模型的预测分布来获得类似的表现。出现个别的能力不足和输出异常,可以补充有限数据使用强化学习的方案调整。

吉利具体怎么做的没细说,不过可以推测应该是将617B参数的R1大模型,基于星睿自身的车控FunctionCall大模型、主动交互端侧大模型等核心组件进行蒸馏,将R1大模型训练成适应智能汽车交互场景,并且能在车端跑起来的状态,之后在融合进吉利自己的技术体系里。

之所以能这么操作,离不开R1大模型本身的技术特征。

与之前常见的大语言模型不同,R1显著的特征有两个,一是多模态能力更强,二是训练成本更低

c98d77b94a3d51dd285d22342fa0b039.png

前者来自R1的架构级创新,包括Multi-Head Latent Attention(MLA)、DeepSeekMoE和Multi-Token Prediction(MTP)。

MLA解决长序列处理的效率问题,将过程中的键和值压缩成低秩的潜在向量,显著降低了推理过程中的内存占用。这种机制使得DeepSeek-V3能够处理如整本书或高分辨率图像这样的长序列,同时保持较低的计算开销。

MoE模型通过将任务分配给不同的“专家”来处理,即在处理每个 token 时,仅有部分参数被激活,这使得模型能够聚焦于一小部分经过高度训练的专家模块,从而快速且精准地给出答案。

MTP的意思是多token预测目标,即在每个步骤中预测多个未来的token。这种方法增强了模型的文本生成能力,特别是在长文本生成任务中,能够生成更加连贯和上下文丰富的文本。

后者来自训练过程中的创新,比如FP8混合精度训练、DualPipe管道并行性和跨节点全对全通信内核等优化技术,实现了高训练效率。完整训练需要278.8万个H800 GPU小时,成本约为557.6万美元,仅为传统大模型数十分之一。

R1发布两周左右就落地上车,核心依然离不开它强大的多模态能力,以及低廉链接的训练方式、成本。

c9615311365104896b969d4c89a30430.jpeg

实际上R1相比以往任何基础大模型,都更容易被应用到千行百业的具体场景中。

而应用在智能汽车上,上车方式不是简单在吉利的车机上安装一个DeepSeek应用,背后DeepSeek给吉利的技术支持,不再仅仅局限于授权一个API,而是把震惊全世界的R1大模型能力,融合进吉利自己的技术体系。

这里强烈推荐下自动驾驶之心最新的的多模态大模型课程,课程从通用多模态大模型,到大模型微调,最终在聚焦在端到端自动驾驶多模态大模型,基本上面试的东西课程里面都有介绍。

两人拼团立享优惠!扫码学习课程

图片

车企没有AI能力,接不住DeepSeek

何小鹏是第一个公开谈论DeepSeek的车企老板,昨天刚刚在内部开工信中承认DeepSeek在AI领域取得了显著成就,并预测AI将在未来十年驱动汽车行业产生巨大变革。

随着吉利的新进展,后续DeepSeek毫无疑问会迎来一波上车热潮,各家争先恐后官宣。

DeepSeek大概率会成为类似华为ADS、高通8295、英伟达Orin一样的旗帜图腾,深深烙印在用户思维中,成为智能车的核心产品力和卖点之一

不过和这些具体的产品功能相比,DeepSeek对于整个智能汽车产业影响可能更深远。

c8be5d894f1900f087c0878c4ef630a5.jpeg

吉利与DeepSeek的合作方式,是将R1模型的知识能力蒸馏融合进自研模型。实际上这也是目前DeepSeek在千行百业落地的模式。

因为DeepSeek率先实现了高性能低成本、泛化能力好又方便部署的大模型,不必(或者说当下也没条件)分出团队针对某种应用场景专门研发模型。

所以作为车企,没自己的东西,还真接不住DeepSeek:必须具有大模型基础能力和产品,以及综合研发、维护、迭代的体系化AI能力。

这也是从车企角度看,吉利会成为第一个官宣上车DeepSeek的原因。

整个星睿大模型是一个技术体系,吉利已经搭建了3年之久。包括车控大模型、主动交互端侧大模、云端大模型、多模态融合引擎、算力基础设施等等。整合了自然语言处理(NLP)、计算机视觉(CV)、语音识别、多模态交互等AI技术,支持车辆控制、语音交互、场景化服务等功能。

DeepSeek“上车”后,也不会局限于只能座舱的交互应用。未来,DeepSeek R1的生成能力可以用来模拟复杂驾驶场景,加速算法迭代…

9c7dee24b2ed7980e1ccbf99131df87b.jpeg

所以最前沿的大模型技术进入汽车行业,眼下还不是大水漫灌让所有玩家水涨船高,只有自身AI能力积累最深的头部车企,才能接住最早的一波红利。

以前是AI公司专门成立汽车团队和子公司,以项目形式作为乙方交付;国产基础大模型突破后,这种合作方式被颠覆,车企需要根据大模型的特征调整自己的技术体系和功能落地。

当然对车企本身自研能力和大模型基础提出更高要求。

① 自动驾驶论文辅导来啦

f3cadf59f5ed182e6754c3d4cd6738c0.jpeg

② 国内首个自动驾驶学习社区

『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知端到端自动驾驶世界模型仿真闭环2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型,更有行业动态和岗位发布!欢迎扫描加入

d059668155fe34adf33231dc201e8fa4.png

 ③全网独家视频课程

端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、CUDA与TensorRT模型部署大模型与自动驾驶NeRF语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

5afbf9e5682593701cc744584d0f07d1.png

网页端官网:www.zdjszx.com

④【自动驾驶之心】全平台矩阵

cbe6f7a470d596d70bae607695c25656.png

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值