UC伯克利最新!Real2Render2Real:超灵活可扩展机器人数据~

点击下方卡片,关注“具身智能之心”公众号

作者丨具身智能之心

本文只做学术分享,如有侵权,联系删文


>>点击进入→具身智能之心技术交流群

更多干货,欢迎加入国内首个具身智能全栈学习社区具身智能之心知识星球(戳我)这里包含所有你想要的。

出发点与核心问题

机器人学习领域长期面临数据稀缺的挑战。当前主流的数据收集方式——人类遥操作(teleoperation)存在以下局限性:

  • 成本高昂:依赖人工操作,单次演示耗时约1-2分钟

  • 可扩展性差:最大规模的数据集(约10万条)仍比LLM/VLM训练数据小100,000倍

  • 硬件依赖:需特定机器人实体,难以跨平台复用

传统解决方案如物理仿真存在固有缺陷:

  • 动力学模型不精确(如能量不守恒)

  • 复杂接触建模需人工调参

  • 高保真资产创建耗时

核心科学问题:能否在不依赖动力学仿真或人类遥操作的情况下,通过计算方法规模化生成机器人视觉-动作数据?

方法创新:R2R2R技术框架

1)整体流程

R2R2R通过三阶段流程实现数据生成:

  1. Real-to-Sim转换

  • 输入:智能手机拍摄的多视角物体扫描+单段人类演示视频

  • 输出:带纹理的3D网格资产+6-DoF物体运动轨迹

  • 数据增强

    • 物体初始位姿随机化

    • 运动轨迹插值生成新变体

  • 并行渲染

    • 使用IsaacLab引擎生成光真实感的机器人执行视频

    • 输出RGB图像-动作对(兼容VLA模型)

    2)关键技术突破

    (1) 3D高斯泼溅重建(3DGS)
    • 采用GARField算法实现物体/部件级语义分割

    • 支持刚体和铰接物体(如抽屉、水龙头)

    • 通过SuGaR方法转换为兼容渲染引擎的网格

    (2) 轨迹多样性生成
    • 空间归一化:将原始轨迹转换到规范空间

    • 球面线性插值(Slerp):保持运动语义

    • 采样启发式:避免目标位姿附近的无效初始化

    (3) 无动力学假设的逆运动学
    • 使用PyRoki求解器生成关节空间轨迹

    • 关键假设:接触期间物体刚性跟随轨迹

    • 避免模拟摩擦/变形等复杂物理现象

    实验验证

    1)实验设置

    • 硬件平台:ABB YuMi双臂机器人(训练时未见过的形态)

    • 对比基准:人类遥操作数据(50-150条)vs R2R2R生成数据(50-1000条)

    • 评估任务

      • 单物体抓取(拾取玩具虎)

      • 多物体交互(将杯子放在咖啡机上)

      • 铰接物体操作(关闭水龙头/打开抽屉)

      • 双手协调(双手抬起包裹)

    2)核心发现

    (1) 数据效率对比
    • 单GPU速度:51条/分钟(人类遥操作仅1.7条/分钟)

    • 时间成本:生成1000条数据仅需13-38分钟(人类收集150条需60-104分钟)

    (2) 策略性能分析
    • 低数据量时(<150条),真实数据更具样本效率

    • 当R2R2R数据量达到1000条时,性能与人类数据相当(p>0.05,等效性检验)

    技术优势与局限性

    1)创新价值

    • 免仿真:完全规避物理引擎的建模误差

    • 硬件无关:仅需智能手机采集的2D视频

    • 轨迹多样性:单次演示可生成数百变体

    • 跨形态兼容:支持不同机器人URDF模型

    2)当前局限

    限制维度

    具体表现

    改进方向

    物理交互建模

    无法模拟滑动/形变

    集成增量势接触模型(IPC)

    环境感知

    缺乏碰撞检测

    结合快速运动规划

    操作类型

    仅支持抓取式操作

    扩展非抓取动作(推动/倾倒)

    抓取泛化性

    仅兼容平行夹爪

    支持多指灵巧手

    跟踪鲁棒性

    易受反光/遮挡干扰

    置信度感知滤波

    参考

    [1] Real2Render2Real: Scaling Robot Data Without Dynamics Simulation or Robot Hardware

    文章首发于国内首个具身智能之心全栈技术平台,具身智能之心知识星球,欢迎扫码加入和近300家公司和高校交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值