一、项目背景与研究价值
在现代工业自动化中,机器人抓取定位是实现柔性制造和智能物流的关键技术。通过视觉系统识别目标物体的位置和姿态,机器人能够准确地进行抓取操作,提高生产效率和灵活性。
传统的机器人抓取定位方法依赖于复杂的传感器系统和精确的环境建模,成本高、适应性差。随着深度学习技术的发展,基于视觉的抓取定位方法逐渐成为主流。本文将介绍如何使用YOLOv10模型结合PyQt5界面,构建一个机器人抓取定位系统,实现对目标物体的实时检测和定位。
二、数据集准备
2.1 推荐数据集来源
为了训练和评估机器人抓取定位模型,需要准备包含各种物体的图像数据集,并标注其位置和抓取点。以下是一些公开可用的数据集:
1)Cornell Grasping Dataset
- 包含885张RGB-D图像,标注了物体的抓取矩形。
- 数据集链接:Cornell Grasping Dataset
2)Jacquard Dataset
- 包含超过54,000张合成图像,标注了