哥德巴赫猜想原创成立之证明

本文通过数值分析真值方程r2(N)=C(N)+2π(N)-N/2,得出r2(N)≥1,证明哥德巴赫猜想。借助素数定理,当N足够大时,r2(N)>N/[ln(N)]^2≥1,验证了每个不小于6的偶数是两个奇素数之和的命题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

崔坤

(即墨市瑞达包装辅料厂,山东青岛即墨,266200)

摘要:通过真值方程r2(N)=C(N)+2π(N)-N/2的数值数学分析可得r2(N)≥1
 

关键词哥德巴赫猜想;素数定理;奇素数;奇合数,双记法
 

中图分类号:0156.1初等数论

Proof of the original of Goldbach's conjecture

Abstract:

Through the numerical analysis of the truth equation

 r2(N) =C(N)+2π(N)-N/2,    r2 (N) ≥ 1 can be obtained

Key words: Goldbach conjecture;prime number theorem;

 odd prime number; odd sum numberdouble notation

哥德巴赫的手稿明确了1是素数的概念,也是哥德巴赫猜想的初衷。

 

根据素数的定义,1的确属于广义的素数。

哥猜命题中的素数,是指大于1的奇素数,是狭义素数。

狭义素数的哥猜命题成立,广义素数的哥猜命题自然成立。

王元在《谈谈素数》里这样解释:

哥德巴赫(C.Goldbach)问题是1742年他写信给欧拉时提出来的。

在信中,他提出了将整数表示为素数之和的猜想。

这个猜想可以用略为修改了的语言叙述为:

(A):每个不小于6的偶数都是两个奇素数之和。

(B):每个不小于9的奇数都是三个奇素数之和。

显然,命题(B)是命题(A)的推论。

1为素数,在双记法下:
分析每个大于等于4的偶数N中的奇数对个数:
N=2n中共有n个不相同的奇数,共有n个不相同的奇数对。
奇数对分类与N相关的有四种:
[1](奇素数,奇素数),简称:1+1,令有r2(N), r2(N)又称哥猜表法数
[2](奇合数,奇合数),简称:C+C,令有C(N)
[3](奇素数,奇合数),简称:1+C,令有M(N)
[4](奇合数,奇素数),简称:C+1,令有W(N)
根据其对称性则有:M(N)=W(N)
N=2n中共有π(N)个不相同的奇素数,则:
r2(N)+C(N)+W(N)+M(N)=n…1
M(N)= π(N)- r2(N)…2
M(N)=W(N)…3
有上述〈1〉、〈2〉、〈3〉式得:r2(N)=C(N)+2π(N)-n
其中,r2(N)C(N)均为自然数,π(N)n均为非零自然数。
偶数表法数公式:
r2(N)=C(N)+2π(N)-N/2
r2(N)=π(N)-M(N)

N中奇素数的密度为:
πN/N
那么:当N充分大时,排除2后,
N-πN表示N中全部合数(奇合数+偶合数)

M(N)既可以认为是素数的个数,也可以认为是合数的个数
则:M(N)<[N-πN]*[πN]/N
-M(N)>-[N-π
N]*[πN)]/N

不等式两边同时加上πN),则有:
πN-M(N)>πN-[N-πN]*[πN]/N
即:
r2(N)>[πN]^2/N
根据素数定理:当N充分大时,
r2(N)>N/[ln(N)]^2≥1

即(A)命题成立

r2(N)>N/[ln(N)]^2≥1的部分验证数据

r2(128)>128/(ln128)^2≈5
r2(128)=6>5

r2(398)>398/(ln398)^2≈11
r2(398)=13>11

r2(992)>992/(ln992)^2≈20
r2(992)=26>20

r2(256)>256/(ln256)^2≈8
r2(256)=16>8

r2(1024)>1024/(ln1024)^2≈21
r2(1024)=44>21

r2(4096)>4096/(ln4096)^2≈59
r2(4096)=106>59

r2(16384)>16384/(ln16384)^2≈173
r2(16384)=302>173

r2(65536)>65536/(ln65536)^2≈532
r2(65536)=870>532

r2(262144)>262144/(ln262144)^2≈1683
r2(262144)=2628>1683

r2(1048576)> 1048576/(ln1048576)^2≈5456
r2(1048576)=8478>5456

r2(4194304)>4194304/(ln4194304)^2≈18306
r2(4194304)=27410>18306

r2(16777216 )>16777216/(ln16777216 )^2≈60624
r2(16777216 )=91492>60624

r2(67108864 )>67108864/(ln67108864 )^2≈206624
r2(67108864 )=307700>206624

r2( 268435456)>268435456/(ln268435456)^2≈712644
r2(268435456 )=1050472>712644

 

r2( 17179869184)>

17179869184/(ln17179869184)^2≈30932220
r2(17179869184)=44672120 >30932220

r2( 68719476736)>

68719476736/(ln68719476736)^2≈110363107
r2(68719476736)=158575328 >110363107

r2( 274877906944)>
274877906944/(ln274877906944)^2≈396206612
r2(274877906944)=
566554450 >396206612

r2( 4294967296)>4294967296/(ln4294967296 )^2≈8729894
r2(4294967296)=12682848 >8729894

r2( 1073741824)>1073741824)/(ln1073741824)^2≈2483169
r2(1073741824)=3634222 >2483169

N=P1+P2,P1、P2都是奇素数,

N+3=P1+P2+3≥9

即:命题(B)成立

结论:哥德巴赫猜想成立

参考文献
[1]华罗庚《数论导引》,科学出版社1957-07
[2]
王元《谈谈素数》,哈尔滨工业大学出版社,2011-2
致谢:

本文作者感谢所有关心我的人们,
感谢所有善良的人,
感谢所有给这个世界带来美好及和谐的人
衷心祝愿人们生活美好!

作者简介:崔坤(1963-),男,汉族,山东青岛即墨人,

即墨市瑞达包装辅料厂董事长

从事哥德巴赫猜想研究36年(1984年春天开始)

崔坤的电话及微信:13396392325

通讯地址:山东省青岛市即墨区鳌蓝路838

邮编:266200

第一作者:崔坤(1963-),籍贯:山东青岛即墨,职业:印刷企业董事长,

研究方向:数论。 电子邮箱:cwkzq@126.com

通信作者:崔坤(1963-),籍贯:山东青岛即墨,职业:印刷企业董事长,

研究方向:数论。 电子邮箱:cwkzq@126.com

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值