崔坤
(即墨市瑞达包装辅料厂,山东青岛即墨,266200)
摘要:通过真值方程r2(N)=C(N)+2π(N)-N/2的数值数学分析可得r2(N)≥1
关键词:哥德巴赫猜想;素数定理;奇素数;奇合数,双记法
中图分类号:0156.1初等数论
Proof of the original of Goldbach's conjecture
Abstract:
Through the numerical analysis of the truth equation
r2(N) =C(N)+2π(N)-N/2, r2 (N) ≥ 1 can be obtained
Key words: Goldbach conjecture;prime number theorem;
odd prime number; odd sum number,double notation
哥德巴赫的手稿明确了1是素数的概念,也是哥德巴赫猜想的初衷。
根据素数的定义,1的确属于广义的素数。
哥猜命题中的素数,是指大于1的奇素数,是狭义素数。
狭义素数的哥猜命题成立,广义素数的哥猜命题自然成立。
王元在《谈谈素数》里这样解释:
哥德巴赫(C.Goldbach)问题是1742年他写信给欧拉时提出来的。
在信中,他提出了将整数表示为素数之和的猜想。
这个猜想可以用略为修改了的语言叙述为:
(A):每个不小于6的偶数都是两个奇素数之和。
(B):每个不小于9的奇数都是三个奇素数之和。
显然,命题(B)是命题(A)的推论。
1为素数,在双记法下:
分析每个大于等于4的偶数N中的奇数对个数:
N=2n中共有n个不相同的奇数,共有n个不相同的奇数对。
奇数对分类与N相关的有四种:
[1](奇素数,奇素数),简称:1+1,令有r2(N)个, r2(N)又称哥猜表法数
[2](奇合数,奇合数),简称:C+C,令有C(N)个
[3](奇素数,奇合数),简称:1+C,令有M(N)个
[4](奇合数,奇素数),简称:C+1,令有W(N)个
根据其对称性则有:M(N)=W(N)
设N=2n中共有π(N)个不相同的奇素数,则:
r2(N)+C(N)+W(N)+M(N)=n…〈1〉
M(N)= π(N)- r2(N)…〈2〉
M(N)=W(N)…〈3〉
有上述〈1〉、〈2〉、〈3〉式得:r2(N)=C(N)+2π(N)-n
其中,r2(N)、C(N)均为自然数,π(N)、n均为非零自然数。
偶数表法数公式:
r2(N)=C(N)+2π(N)-N/2
r2(N)=π(N)-M(N)
在N中奇素数的密度为:
π(N)/N
那么:当N充分大时,排除2后,
用N-π(N)表示N中全部合数(奇合数+偶合数)
M(N)既可以认为是素数的个数,也可以认为是合数的个数
则:M(N)<[N-π(N)]*[π(N)]/N
-M(N)>-[N-π(N)]*[π(N)]/N
不等式两边同时加上π(N),则有:
π(N)-M(N)>π(N)-[N-π(N)]*[π(N)]/N
即:
r2(N)>[π(N)]^2/N
根据素数定理:当N充分大时,
r2(N)>N/[ln(N)]^2≥1
即(A)命题成立
r2(N)>N/[ln(N)]^2≥1的部分验证数据
r2(128)>128/(ln128)^2≈5
r2(128)=6>5
r2(398)>398/(ln398)^2≈11
r2(398)=13>11
r2(992)>992/(ln992)^2≈20
r2(992)=26>20
r2(256)>256/(ln256)^2≈8
r2(256)=16>8
r2(1024)>1024/(ln1024)^2≈21
r2(1024)=44>21
r2(4096)>4096/(ln4096)^2≈59
r2(4096)=106>59
r2(16384)>16384/(ln16384)^2≈173
r2(16384)=302>173
r2(65536)>65536/(ln65536)^2≈532
r2(65536)=870>532
r2(262144)>262144/(ln262144)^2≈1683
r2(262144)=2628>1683
r2(1048576)> 1048576/(ln1048576)^2≈5456
r2(1048576)=8478>5456
r2(4194304)>4194304/(ln4194304)^2≈18306
r2(4194304)=27410>18306
r2(16777216 )>16777216/(ln16777216 )^2≈60624
r2(16777216 )=91492>60624
r2(67108864 )>67108864/(ln67108864 )^2≈206624
r2(67108864 )=307700>206624
r2( 268435456)>268435456/(ln268435456)^2≈712644
r2(268435456 )=1050472>712644
r2( 17179869184)>
17179869184/(ln17179869184)^2≈30932220
r2(17179869184)=44672120 >30932220
r2( 68719476736)>
68719476736/(ln68719476736)^2≈110363107
r2(68719476736)=158575328 >110363107
r2( 274877906944)>
274877906944/(ln274877906944)^2≈396206612
r2(274877906944)=
566554450 >396206612
r2( 4294967296)>4294967296/(ln4294967296 )^2≈8729894
r2(4294967296)=12682848 >8729894
r2( 1073741824)>1073741824)/(ln1073741824)^2≈2483169
r2(1073741824)=3634222 >2483169
N=P1+P2,P1、P2都是奇素数,
N+3=P1+P2+3≥9,
即:命题(B)成立
结论:哥德巴赫猜想成立
参考文献:
[1]华罗庚《数论导引》,科学出版社1957-07
[2]王元《谈谈素数》,哈尔滨工业大学出版社,2011-2
致谢:
本文作者感谢所有关心我的人们,
感谢所有善良的人,
感谢所有给这个世界带来美好及和谐的人
衷心祝愿人们生活美好!
作者简介:崔坤(1963-),男,汉族,山东青岛即墨人,
即墨市瑞达包装辅料厂董事长
从事哥德巴赫猜想研究36年(1984年春天开始)
崔坤的电话及微信:13396392325
通讯地址:山东省青岛市即墨区鳌蓝路838号
邮编:266200
第一作者:崔坤(1963-),籍贯:山东青岛即墨,职业:印刷企业董事长,
研究方向:数论。 电子邮箱:cwkzq@126.com
通信作者:崔坤(1963-),籍贯:山东青岛即墨,职业:印刷企业董事长,
研究方向:数论。 电子邮箱:cwkzq@126.com